
1

graph Manual

V2.00.000

2

Contents

Table of Contents 1

List of Figures 7

List of Tables 9

1 Introduction 11
1.1 Goals . 11
1.2 Operation . 12
1.3 Plots . 12

1.3.1 Bar Graphs . 12
1.3.2 Box Graphs . 13
1.3.3 Line Graphs . 13
1.3.4 Circles . 13
1.3.5 Maps . 13
1.3.6 Pie Charts . 13
1.3.7 Scatter Plots . 13
1.3.8 Surfaces . 13
1.3.9 General Graphics . 13

1.4 Tasks . 13
1.4.1 Sorting . 14
1.4.2 Polynomial Curve Fitting 14
1.4.3 Data Formats . 14
1.4.4 Output Formats . 14

2 Parameters and Expressions 15
2.1 Primitives . 15
2.2 Syntax . 16
2.3 Arithmetic . 16

2.3.1 Addition . 16
2.3.2 Other Operations . 17

2.4 Functions . 18
2.4.1 ABS . 18
2.4.2 AVERAGEDEVIATION 18

3

4 CONTENTS

2.4.3 INDEXED . 18
2.4.4 LOG . 19
2.4.5 LOG10 . 19
2.4.6 LOG2 . 19
2.4.7 MEAN . 19
2.4.8 MEDIAN . 20
2.4.9 MAX . 20
2.4.10 MIN . 20
2.4.11 ROUND . 20
2.4.12 SIZE . 20
2.4.13 SUM . 20
2.4.14 STANDARDDEVIATION 20
2.4.15 VARIANCE . 21

2.5 Variables . 21

3 Commands 23
3.1 Axes . 23
3.2 Background Grid . 24
3.3 BAR . 26
3.4 BAR3D . 30
3.5 BOX . 35
3.6 BMP . 41
3.7 BUCKETS . 42
3.8 CIRCLES . 45
3.9 COLOR . 50
3.10 COLORMAP . 52
3.11 CONTOUR . 53
3.12 DISPLAY . 61
3.13 DRAW ARROW . 62
3.14 DRAW BEZIER . 64
3.15 DRAW LINE . 66
3.16 DRAW TEXT . 68
3.17 GIF . 71
3.18 IMAGE . 72
3.19 LEGEND . 73
3.20 LINE . 76
3.21 LLSQ . 79
3.22 PIE . 81
3.23 PLACE . 85
3.24 PS . 87
3.25 READBIN . 88
3.26 READCSV . 90
3.27 READONED . 92
3.28 SCATTER . 93
3.29 SHOW . 100
3.30 SORT . 102

CONTENTS 5

3.31 SURFACE . 104
3.32 SYMBOL . 110
3.33 TRANSFORM . 112

4 Graphics 115
4.1 Color Maps . 115
4.2 Line Styles . 116

List of References 119

Index 119

6 CONTENTS

List of Figures

3.1 Bar graph. 28
3.2 Multi-colored bar graph. 29
3.3 3D Bar graph. 32
3.4 Multiple bars on a single plot. 34
3.5 Multiple box plots. 39
3.6 Box plot with LLSQ line fit. 40
3.7 Results of bucketizing data . 44
3.8 CIRCLES command with sample output 49
3.9 Bilinear Interpolation . 54
3.10 Basis computation. 54
3.11 Wave tank contour plot. 58
3.12 Contour plot with elevation coloring 59
3.13 Contour plot with slope shading 60
3.14 An arrow . 62
3.15 DRAW ARROW with curves . 63
3.16 Bezier curves making a callout cloud 65
3.17 DRAW LINE example with square 67
3.18 DRAW TEXT example . 70
3.19 Legend construction and display 75
3.20 Multiple line graphs. 78
3.21 Linear Least Squares fit to partial COS curve 80
3.22 Pie chart example . 84
3.23 Two graphs in one using PLACE 86
3.24 Scatter plot. 96
3.25 Using symbol size to depict extra information 97
3.26 Polynomial regression curve for random data. 98
3.27 Polynomial regression curve for random data, too high a degree. 99
3.28 Flat shading 3D surface plot . 107
3.29 Elevation color shading surface plot (flat, no boundaries) 108
3.30 Diffuse color shading with light source pointing down 109
3.31 Using the LOG transforms for line graphs. 113

4.1 Default color map . 115
4.2 Different linestyles and their STYLE values 118

7

8 LIST OF FIGURES

List of Tables

2.1 Addition type coercion table . 17
2.2 Type coercions between other arithmetic operators. 18

3.1 Box plot whisker range values . 36
3.2 The default color map. 50
3.3 Sun angles for slope shading . 55
3.4 OS default display routines . 61
3.5 Defined fonts. 68
3.6 Binary File Types . 88
3.7 Scatter plot symbols . 94
3.8 Shading values for different surface displays 106

9

10 LIST OF TABLES

Chapter 1

Introduction

The graph program implements the Tripline data mining effort visualization
function. It accepts “programs” to generate one or more graphics as the result
of an analysis. These might be better termed “scripts” since the commands are
executed one at a time and there are no loops.

1.1 Goals

The design goals are simplistic:

1. Functionality The program provides general purpose visualization for
two and three dimensional data.

2. User Friendliness None. Control is through other programs, perhaps
browser based. Installation is extremely simple: there must be:

(a) No required libraries that aren’t part of the basic system.

(b) Can be part of some other installation.

(c) No required changes to execution path, installation of configuration
files or the like.

(d) Source code is complete. The only system requirements are the stan-
dard C libraries for I/O and basic mathematical functions. For ob-
scure reasons Microsoft doesn’t implement LOG2 so you have to do
without on such machines.

(e) An error causes the program to exit without continuing.

3. DocumentationAll commands, options, and operations are documented.
Program code documentation is mostly to NATO standards.

4. Ease of Programming Typically only one graph is generated. No data
structures are ever freed, no garbage is ever collected. The program is not
suited for embedded systems or those with limited memory.

11

12 CHAPTER 1. INTRODUCTION

5. Portability The program has been successfully tested under 32 and 64
bit Linux, Windows XP, Windows 7, and MacOSX.

1.2 Operation

The single program graph (or in Windows graph.exe) is placed on the standard
system search path or you must provide its full path. The single command line
argument is the name of a script file that contains commands, and perhaps data,
to create a graph, map, or other visualization. If the command line argument
is -, then input comes from stdin; it is not interactive. Additional arguments
can be included and all are placed in the global variables ARGVn as strings.

graph test.graph

Typically, execution will be followed by echoes of the the input file with some
rudimentary information about the line being executed. For example:

graph V1.00.009

1: READONED solitaire="solitaire.dat"

Read 5858 numbers from solitaire.dat

2: BUCKETS solb TRUNCATE, DATA=solitaire

Low computed = 0

High computed = 52

53 buckets created

Finished buckets

3: IMAGE WIDTH=640, HEIGHT=480

Image size is 640 x 480, set to 1

4: AXES_LABEL_FONT = "F8x13bold"

5: BAR solb XLABEL="Cards Up, mean " + mean(solitaire), YLABEL="Count"

xll = 36, xur = 633

6: BMP "test.bmp"

Wrote test.bmp at 640x480

Depending upon the output selected and system, there may also be a display
of the generated image.

1.3 Plots

The following plots are implemented.

1.3.1 Bar Graphs

Counts in an array are displayed as solid bars off the horizontal axis in both 2
and 3 dimensions. There are also tools for computing histograms from data.

1.4. TASKS 13

1.3.2 Box Graphs

These are variations of the Tukey style plot that display 5 statistical values
about data sets.

1.3.3 Line Graphs

One or more sets of X-Y related data can be plotted on a single surface. Data
can be sorted if it arrives unsorted. Line color and style can be varied. The
data can be transformed for log graphs as well.

1.3.4 Circles

Plot the data as a set of circles either at random locations or on indexed axes.

1.3.5 Maps

The system can read some ESRI formatted shape files and has a limited set of
cartography display tools and mapping transformations.

1.3.6 Pie Charts

You can read a collection of data and plot them as a pie chart calling out a
wedge to emphasize a particular value as well.

1.3.7 Scatter Plots

One or more sets of X-Y related data can be plotted. Different symbols and
different colors can distinguish data sets.

1.3.8 Surfaces

Three dimensional datasets can be displayed on contour plots and as 3D surfaces.
3D viewing is restricted to certain angles.

1.3.9 General Graphics

You can provide additional graphics with drawing of lines, areas, curves, text
and other graphical constructs.

1.4 Tasks

Various house keeping and other tasks can be performed.

14 CHAPTER 1. INTRODUCTION

1.4.1 Sorting

Data sets can be sorted into ascending/descending order with additional data
following the sort. Thus it is possible to sort an X,Y dataset on either X or Y
and have the other coordinate follow the sort.

1.4.2 Polynomial Curve Fitting

You can compute the linear least squares approximation to an X,Y dataset and
plot this approximation as well. Polynomials can also be fit to data and the
results plotted1.

1.4.3 Data Formats

Various data formats can be read including comma separated values (CSV) files,
large sets of numbers in binary format, ESRI shape files and others.

1.4.4 Output Formats

You can generate your visualization into a Microsoft BMP format file or a
Postscript image. Most of the images in this manual were written to Postscript
and included in the LATEXdocument using the graphicx package.

1Not implemented yet

Chapter 2

Parameters and Expressions

Most commands accept lists of keywords and assigned expressions. These take
the form of:

<keyword> = <expression>, . . .

repeated as needed. Each command accepts keywords and values specific to its
function. Some accept groups of keywords such as those associated with axes
display, grid markings, and so on. A keyword and expression can appear by
itself as a way of modifying system global variables.

This chapter presents the syntax and semantics of these expressions and an
expansion of some of the mathematical functionality it supports.

2.1 Primitives

The following data structures are supported:

<integer> 32 bit integers ranging from −2147483648 → 2147483647. These
integers can be included in the control file with the proviso that + and -
when used for addition and subtraction must be separated from the integer
value. Integers can also be in hexadecimal format by prefixing the digits
with ’0x’ as in 0x1E0 (equivalent to 480).

<float> 64 bit double precision floating-point numbers. These numbers can
be included in the control files with the usual E notation and the caveats
about + and - for integers.

<string> Strings with up to 4096 characters in them. To include a double
quote within a string you prefix it with a backslash. The back slash
characters \n and \r generate codes 10 and 13 respectively. Strings can
be included in input control files.

15

16 CHAPTER 2. PARAMETERS AND EXPRESSIONS

<list> Lists of items which can be mixed integer and floating-point values.
Lists cannot be read by the expression reader and cannot be included in
the control file unless specified for the particular command.

<intvector> A vector of integer values. These can only be created and cannot
be included in the input file.

<floatvector> A vector of double precision floating-point values. These can
only be created and cannot be included in the input file.

<bytearray> An unsigned char array with a width and height for storing the
constructed image. These can only be created and cannot be included in
the input file.

<intarray> A 32 bit integer array with a width and height for contour plots
and other purposes. These can only be created and cannot be included in
the input file.

<floatarray> A 64 bit double-precision floating-point array with a width and
height. These can only be created and cannot be included in the input
file.

2.2 Syntax

Addition, subtraction, multiplication and division are supported with left asso-
ciativity and the usual operator precedence. Parentheses are used to temporarily
override the default precedence. Parentheses enclose the arguments of a limited
number of built-in functions. Constants include strings and numbers as above.

2.3 Arithmetic

Arithmetic operations between scalars, vectors and arrays are permitted. When
an operation between an integer and floating-point value occurs, the value is
always floating-point. The addition operator is overloaded for string concate-
nation.

2.3.1 Addition

Addition between numbers, strings, and vectors is supported. When adding a
number to a string, the result is a new string with the number in ASCII. Strings
up to 4096 characters in length are allowed. When adding vectors and lists the
number of elements in each must be the same or an error is signalled. The
possible combinations and their outcomes are shown in Table 2.1. Operations
on vectors and arrays are always on an element by element basis.

2.3. ARITHMETIC 17

+ int float string list int float byte int float

vector vector array array array

int int float string list int float byte int float
vector vector array array array

float float float string list float float float float float
vector vector array array array

string string string string error error error error error error
list list list error list error error error error error
int int float error error int float error error error

vector vector vector vector vector
float float float error error float float error error error

vector vector vector vector vector
byte byte float error error error error byte int float

array array array array array array
int int float error error error error int int float

array array array array array array
float float float error error error error float float float
array array array array array array

Table 2.1: Addition type coercion table

2.3.2 Other Operations

Scalar subtraction, multiplication, and division between numbers and number
structures is also implemented. In these cases strings are not allowed. Opera-
tions between vectors and arrays are on an element by element basis. Table 2.2
describes the permitted type coercions.

18 CHAPTER 2. PARAMETERS AND EXPRESSIONS

- int float list int float byte int float

*/ vector vector array array array

int int float list int float byte int float
vector vector array array array

float float float list float float float float float
vector vector array array array

list list list list error error error error error
int int float error int float error error error

vector vector vector vector vector
float float float error float float error error error

vector vector vector vector vector
byte byte float error error error byte int float

array array array array array array
int int float error error error int int float

array array array array array array
float float float error error error float float float
array array array array array array

Table 2.2: Type coercions between other arithmetic operators.

2.4 Functions

Single argument functions are also implemented for simple statistical measures
and common mathematical functions. Many of these work with lists, vectors
and arrays producing a similar structure when appropriate.

2.4.1 ABS

For any scalar, list, vector or array, returns the absolute value of its elements or
value in the same type. Byte arrays are returned as is since they have no signs.

2.4.2 AVERAGEDEVIATION

The AVERAGEDEVIATION function accepts lists and vectors with at least
two elements. For the elements of these structures (M0, . . .Mn), the average
deviation is:

AV ERAGEDEV IATION(M) =

∑n

i=0
| MEAN(M)−Mi |

n

2.4.3 INDEXED

The INDEXED function takes a vector as an argument and creates a string
with all the values (up to 4k characters worth). Each entry is prefixed with
its index, a colon and a blank. The vector element follows with floating-point

2.4. FUNCTIONS 19

in %g format, integers %d format, and strings as they are. Each element is
terminated by a newline character. The result can be used by the DRAW
TEXT command to display the results of polynomial regression.

For example,

DRAW TEXT FONT=F6x10,X=0,Y=LASTY,MESSAGE="Degree: " + POLYNOMIAL_DEGREE

DRAW TEXT FONT=F6x10,X=0,Y=LASTY,MESSAGE="Coefficients:\n" +

INDEXED(POLYNOMIAL_COEFFICIENTS)

generates text showing the coefficients of a polynomial generated to fit a curve
to a scatter plot.

2.4.4 LOG

The LOG function computes the natural logarithm of its argument. This can
be either an integer or floating-point value in which case a floating-point number
is returned. If the argument is a list, the natural logarithm of each element is
computed and a new list returned (in the same order as the argument). In the
case of integer vectors, a new vector of floating-point values is returned. For
floating-point vectors, a new vector is also returned.

2.4.5 LOG10

The LOG10 function computes the logarithm base 10 of its argument. This can
be either an integer or floating-point value in which case a floating-point number
is returned. If the argument is a list, the logarithm base 10 of each element is
computed and a new list returned (in the same order as the argument). In the
case of integer vectors, a new vector of floating-point values is returned. For
floating-point vectors, a new vector is also returned.

2.4.6 LOG2

The LOG2 function computes the logarithm base 2 of its argument. This can
be either an integer or floating-point value in which case a floating-point number
is returned. If the argument is a list, the logarithm base 2 of each element is
computed and a new list returned (in the same order as the argument). In the
case of integer vectors, a new vector of floating-point values is returned. For
floating-point vectors, a new vector is also returned.

Note that LOG2 is NOT implemented in windows - using it always results
in 0.

2.4.7 MEAN

The MEAN operation accepts lists and vectors with at least one element. For
all elements of these structures (M0, . . .Mn) the mean is:

MEAN(M) =

∑n

i=0
Mi

n+ 1

20 CHAPTER 2. PARAMETERS AND EXPRESSIONS

2.4.8 MEDIAN

Not implemented yet.

2.4.9 MAX

For any list, vector or array, this function returns its maximum value. For
lists and floating-point structures, the result will be floating-point. For integer
structures, the result will be an integer. Scalars and other types will cause an
error to be signaled.

2.4.10 MIN

For any list, vector or array, this function returns its minimum value. For lists
and floating-point vectors, this value will always be floating-point. For integer
vectors and byte arrays, the result will be an integer. Other argument types
such as scalars and strings will cause an error to be signaled.

2.4.11 ROUND

Floating-point values are converted to integers rounding up for positive values
and rounding down for negative values. Integers are passed through unchanged.
Rounding of a list of numbers is implemented - the integers remain the same
and the floating-point values rounded accordingly. Integer vectors are passed
through unchanged and floating-point vectors are converted to rounded integer
vectors.

2.4.12 SIZE

Returns the number of elements in a list, the number of elements in a vector
of any type, or 1 for scalar values. For arrays, the number of rows times the
number of columns is returned.

2.4.13 SUM

Returns the sum of all elements in a list or vector. The value is returned as a
floating point number whether or not the items summed are integers.

2.4.14 STANDARDDEVIATION

The STANDARDDEVIATION function computes the standard deviation of
a list or vector. For all elements of these structures (M0, . . .Mn) the standard
deviation is:

STANDARDDEV IATION(M) =

√

∑n

i=0
(MEAN(M)−Mi)2

n

At least two elements are required. The function signals an error if presented
with an array or scalar value.

2.5. VARIABLES 21

2.4.15 VARIANCE

The VARIANCE function computes the variance of a list or vector. For all
elements of these structures (M0, . . .Mn) the variance is:

V ARIANCE(M) =

∑n

i=0
(MEAN(M)−Mi)

2

n

2.5 Variables

There are many global variables defined as part of the set up routines. You can
change these values at any time, but at your own risk. The following variables
are not defined anywhere else.

ARGV0 - ARGVn These values are strings taken from the command line.
ARGV0 will be the name used to execute this program, ARGV1 is the
command file being executed. Additional values can be included as well.

NOISY must have an integer value. If 0, no output should occur. If a value
of 1, the control file will be echoed. Higher values will result in additional
information.

VERSION Contains the program name and version as a string.

22 CHAPTER 2. PARAMETERS AND EXPRESSIONS

Chapter 3

Commands

GRAPH accepts single line commands that perform some action. We first
present common attributes shared amongst the plotting commands. Individual
commands are presented in alphabetical order by their keywords.

3.1 Axes

Commands that plot data value share code the draws the axes upon which the
data is placed. A number of attribute-value items are shared amongst these
commands.

The general syntax is:

<key> = <expression>

where the < key > is a symbol and we give the value type required of the
<expression>.

AXES FILL = <integer> Gives the color index of a 3 color group used to fill
the back, left, and bottom axes area in 3D plots. The three colors should
range from dark to light. The globals GREYS, REDS, YELLOWS,
GREENS, CYANS, BLUES, and MAGENTAS have already been
assigned indices and color values. If your plot request contains no
such option, the default is acquired from the SURFACE AXES FILL
or BAR3D AXES FILL depending upon your plot request.

AXES FONT = <string> This option describes the font used to display
numeric values along the bottom and left hand axes. If this option isn’t
used, the default font is found in the global variableAXES FONT which
normally defaults to the ”F6x10” font. Table 3.5 on page 68 gives the
currently available fonts.

AXES LABEL FONT = <string> This option gives the font to use for
displaying labels on each axis. Typically, this will be a description of

23

24 CHAPTER 3. COMMANDS

the data on that axis. The vertical axis is displayed at a 90 degree
angle and the display area is automatically adjusted to account for the
extra labels. If you don’t include this option, the value of the global
AXES LABEL FONT will be used instead. This defaults to the ”F8x13”
font.

XHIGH = <number> If present, overrides the high/low computation for the
data and sets the number to this value.

XLABEL = <string> If present, this option gives text to display below the
numbers on the X axis. It will use the AXES LABEL FONT for its
display as described above. If this option does not appear, no extra label
will appear, though the numbers and graticule will.

XLOW = <number> If present, overrides the high/low computation for the
data and sets the lowest X value to this number.

YHIGH = <number> If present, overrides the high/low computation for the
data and sets the number to this value.

YLABEL = <string> If present, indicates the text to display for the vertical
axis. This will appear with the AXES LABEL FONT font as described
above and will be displayed at a 90 degree angle. If this option is not
present, no label will appear.

YLOW = <number> If present, overrides the high/low computation for the
data and sets the lowest X value to this number.

In addition to these keyword parameters, there are two global variables for
less common modifications.

AXES HORIZONTAL CHARS SEPARATION is the number of pixels
between the graph and the top of the numbers marking the horizontal
axis. It defaults to 2.

AXES VERTICAL CHARS SEPARATION is the number of pixels be-
tween the graph and the last pixel of the text markings. It defaults to
2.

3.2 Background Grid

A plot’s background includes the filled area and an graticule extending the side
markings. The following options are supported:

BACKGROUND = <expression> This option changes the default color of
the grid area background. The default value (usually 1 for white) resides
in the GRAPH BACKGROUND global variable.

3.2. BACKGROUND GRID 25

GRID COLOR = <expression> The expression must evaluate to an inte-
ger value between 0 and 255 inclusive. This specifies the grid marking
colors to use. The default color will be found in the GRID COLOR
global and is usually 8 (for grey).

GRID STYLE = <expression> The expression must be an integer value
the bits of which indicate the style to use when drawing the grid lines.
In a 32 bit integer, a bit of 1 indicates that a pixel in the selected color
should be drawn, a 0 indicates nothing should be drawn. The default value
(typically -1 for drawing solid lines) can be found in the GRID STYLE
global variable.

Setting a grid style of 0 will cause the grid to not be drawn. However, two
options provide finer control.

NOHORIZONTAL GRID If this option is present, the grid will have only
vertical lines (these can also be disabled).

NOVERTICAL GRID If this option is present, the system won’t draw the
vertical lines.

26 CHAPTER 3. COMMANDS

3.3 BAR

Create a bar graph.

BAR<name>
BAR COLOR =<integer>,<list>,<vector>,

BAR SEPARATION = <integer>,

GRAPH BACKGROUND = <integer>
. . .Axes keywords . . .
. . .Grid keywords . . .

Description: Plots a bar graph of X and Y data. Typically this is the result
of a histogram computation. The first argument is a symbol name such
as that used in the BUCKETS command. This symbol is automatically
conjoined with X and Y to look for the X and Y values.

Keywords: See the keywords associated with the AXES commands that can
be part of this command. In addition, the following are supported:

BAR COLOR = {<integer>,<list>,<vector>} Sets the color to dis-
play the bars in. If you don’t provide this option, the global variable
BAR COLOR is used which defaults to saturated red. If the value
is a list, it must have the same number of entries as the plot data.
Each entry is the color number of the bar associated with it. If the
plot values are vectors, then the color value must also be a vector (or
integer for a single color).

BAR SEPARATION = <integer> This value indicates the number
of pixels to leave between each bar in the display. If you don’t provide
the keyword, the default of 1 is retrieved from theBAR SEPARATION
global.

Variables Set: As a result of building the axes, the following variables are set:

MINX The minimum X value used to generate the axes.

MINY The minimum Y value used to generate the axes.

SCALEX The scale computed for the X axis. An X pixel value will be:

Xpixel = XLL+
x−MINX

SCALEX

SCALEY The scale computed for the Y axis. A Y pixel value will be:

Ypixel = Y LL+
y −MINY

SCALEY

3.3. BAR 27

XLL The lower left corner X pixel coordinate of the graph area.

YLL The lower left corner Y pixel coordinate of the graph area.

XUR The upper right corner X pixel coordinate of the graph area.

YUR The upper right corner Y pixel coordinate of the graph area.

Errors Detected: In addition to errors detected by the axis display code, the
following errors are detected.

At line nn, missing data symbol to plot The symbol name contain-
ing the data to plot can’t be found by the parser.

At line nn, value of name is bad The value of one of the axes (name)
is not an integer vector or list.

At line nn, no image size declared yet You must create an image with
the IMAGE command first.

At line nn, lower left x=minx, and right x=maxx are probably bogus
The plot area generated by the axes commands generate a plot area
that’s too large.

Known Deficiencies: Doesn’t work with lists and floating-point vectors yet.

See Also: SYMBOL TABLE on page 110, BUCKETS on page 42.

Example: The following example reads 1000 Gaussian distributed integers and
displays their histogram.

READCSV

DEVIATE

84

67

-3

.

.

.

70

83

47

71

EOF

BUCKETS gauss DATA=DEVIATE,BUCKET_SIZE=10

IMAGE WIDTH=320,HEIGHT=200

BAR gauss BAR_COLOR=BLUE

bmp "bar.bmp"

28 CHAPTER 3. COMMANDS

This results in the following BMP image.

Figure 3.1: Bar graph.

The next example reads 256 histogram elements with the bottom 5% and top
5% displayed in red, the rest in blue. Many of the data lines have been removed.
Note that the program generating the data must make the color assignment.

readcsv

pixel_x,pixel_y,bcolor

.

.

.

29,11685,2

30,13808,2

31,12516,2

32,13721,6

33,12732,6

.

.

.

215,15168,6

216,13565,6

3.3. BAR 29

217,14578,2

218,13740,2

.

.

.

EOF

IMAGE WIDTH=580,HEIGHT=480

BAR pixel BAR_COLOR=bcolor,XLABEL="Pixel Value",YLABEL="Count"

GIF "histo2.gif"

PS "histo2.ps"

DISPLAY file="histo2.gif"

The graph width was adjusted by hand until blank lines between bars dis-
appeared.

Figure 3.2: Multi-colored bar graph.

30 CHAPTER 3. COMMANDS

3.4 BAR3D

Create a 3D bar graph.

BAR3D
X = <list, vector>,

Y = <list, vector>,

AXES FILL = <integer>,

COLOR = <integer>,

LABEL = <string>,

PERCENT = <number>,
ROTATEY = <number>,
XOFF = <number>,
YOFF = <number>,
ZOFF = <number>,
. . .Axes keywords . . . ,
. . .Grid keywords . . .

Description: This display generates a 3 dimensional bar graph for one or more
data sets. The bars can be different colors, the graph can be rotated and
translated (within some fairly narrow bounds) and axes labeled and fiddled
with in the usual means.

Keywords: Multiple data sets extend out along the Z axis with the vertical
axis for showing value, the X axis for indices (typically the result of a
histogram BUCKETS calculation). The following attribute-value pairs
are recognized.

AXES FILL = <integer> This value specifies the first color index of
3 for filling the axes areas. The default value is found in the global
variable BAR3D AXES FILL. The first color should be dark, the
second lighter and the third lightest giving the appearance of the
graph being lit from the top.

COLOR = <integer> This value specifies the color for the next set
of bars. The color index refers to a dark value and the next two
color indices should be lighter versions. The default color index is
found in the BAR3D COLOR and defaults to 12, a set of 3 red
colors. Globals with values include GREYS, REDS, YELLOWS,
GREENS, CYANS, BLUES, and MAGENTAS.

This option can occur multiple times to provide different colors for
different data sets.

LABEL = <string> This option provides a label for each bar to ap-
pear. This label will then appear in the legend if one is present.

3.4. BAR3D 31

PRECENT = <number> This value specifies how much of the space
available for a bar is actually used. 100.0 results in run together bars,
0.0 makes them disappear. The default value is 80.0 and is found in
the global BAR3D PERCENT WIDTH.

ROTATEY = <number> Sets the rotation around the Y (vertical)
axis in degrees. The default value (-45.0) is found in the global
BAR3D ROTATEY variable. Values should not exceed 0.0 and
should not be less than -90.0 or the ordered hidden surface removal
won’t work.

X = <list, vector> This keyword and value must be present at least
once. It specifies the X values for the corresponding Y values. The
X and Y structures must be of the same type and size. When both
an X and Y value are found in the list, a set of bars is created. The
X and Y values are then removed and no plotting occurs until the
next set is found.

XOFF = <number> Sets the X axis offset. The default value found in
BAR3D XOFF is 0.0. Increasingly large negative values will shift
the display area to the left. Larger positive values will go to the right.

Y = <list, vector> This keyword and value must be present at least
once. It specifies the Y values for the corresponding X values. The
X and Y structures must be of the same type and size. When both
an X and Y value are found in the list, a set of bars is created. The
X and Y values are then removed and no plotting occurs until the
next set is found.

YOFF = <number> Sets the Y axis offset. The default value found in
BAR3D YOFF is -.25. Increasingly large negative values will shift
the display area down. For Larger positive values it will go up.

ZOFF = <number> Sets the Z axis offset. The default value found
in BAR3D ZOFF is -3.0. Increasingly large negative values will
shift the display area farther away mitigating some effects of the
perspective transformation but will result in smaller images. The
default viewing display area lies in the −2 → −4 Z area.

Variables Set: As a result of display the following variables are set:

XLL The lower left corner X pixel coordinate of the graph area.

YLL The lower left corner Y pixel coordinate of the graph area.

XUR The upper right corner X pixel coordinate of the graph area.

YUR The upper right corner Y pixel coordinate of the graph area.

Errors Detected: In addition to bad type errors and out of storage errors, the
following are signaled.

At line nn, COLOR value is not an integer Color values must be in-
tegers.

32 CHAPTER 3. COMMANDS

At line nn, X size xx and Y size yy are different Vector and list sizes
must be identical.

At line nn, X and Y aren’t same type or not supported types You
can’t mix types. Scalars and arrays aren’t supported in any case.

Known Deficiencies: Doesn’t work with lists and floating-point vectors yet.

See Also: BAR on page 26, and LEGEND on page 73.

Example: The following example reads some data, computes a histogram, and
displays a 3D bar graph.

image sol width=640, height=480

READONED solitaire "../solitaire.dat"

BUCKETS solb TRUNCATE, DATA=solitaire

bar3d X=solb_x,Y=solb_y,rotatey=-25, xoff=-.5,zoff=-2.0,PERCENT=50

ps "bar3d.ps"

This results in the Postscript image of Figure 3.3.

Figure 3.3: 3D Bar graph.

This next example reads a CSV file with some statistical data: each record
is named with an alpabetic character as follows:

3.4. BAR3D 33

motor,April,June,January

"1/4A",0, 3, 1

"1/2A",0, 2, 2

"A", 9, 7, 3

"B", 6, 11, 4

"C", 25, 8, 6

"D", 10, 15, 7

"E", 3, 6, 2

"F", 11, 5, 1

"G", 8, 6, 1

"H", 1, 6, 3

"I", 4, 10, 5

"J", 2, 4, 4

"K", 1, 2, 1

"L", 0, 0, 2

"M", 0, 0, 1

"N", 0, 0, 1

"O", 0, 0, 0

"P", 0, 0, 0

The script reads this data, sets the font and then draws all 3 bar sets. This
line is too long and is split over several lines. A legend with the labels and colors
is drawn.

// Demonstrate string labels.

IMAGE WIDTH=640,HEIGHT=480

READCSV "motors.csv"

AXES_LABEL_FONT = F12x24

BAR3D XOFF=-.475,ZOFF=-2,COLOR=REDS,LABEL="April",X=motor,Y=April,COLOR=YELLOWS,

LABEL="June",X=motor,Y=June,COLOR=GREENS,LABEL="January",X=motor,Y=January,

ROTATEY=-15,XLABEL="UROC Motor Totals"

LEGEND MESSAGE="Month"

PS "motors.ps"

34 CHAPTER 3. COMMANDS

Figure 3.4: Multiple bars on a single plot.

3.5. BOX 35

3.5 BOX

Box (Tukey) plot.

BOX
COLOR = <integer>,

X = <list, vector>,

Y = <list, vector>,

LLSQ = <integer>,

POLYNOMIAL COLOR = <integer>,

POLYNOMIAL DEGREE = <integer>,

SIZE = <number>,
WHISKER STYLE = <integer>,

RANGE = <integer>,

PERCENTILE = <number>,
. . .Axes keywords . . .
. . .Grid keywords . . .

Description: Generate a box plot in the current display area. Also called a
Tukey plot and attempts to present 5 values in a limited space.

Keywords: See the keywords associated with the axes and grid described ear-
lier. The X and Y keywords must be present, the rest are optional. The
following are supported.

COLOR = <integer> Indicates the color index to use for the next
line display. If no color is given, the value in the global variable
BOX COLOR (typically BLACK) is used.

RANGE = <integer> This option specifies how the whisker range is to
be computed. The 4 possible options (and their values) are specified
in Table 3.1. The default value is taken from the BOX RANGE
global which is normally 2 for the IQR range.

36 CHAPTER 3. COMMANDS

Name Value Description

MINMAX 0 The top whisker marks the largest bucket value and the
bottom the smallest. No outlier circles will appear.

STANDARD DEVIATION 1 The top and bottom whiskers lie one standard deviation
on either side of the bucket mean.

IQR 2 The top and bottom whiskers lie 1.5 times the inter-
quartile range above and below the first and third quar-
tiles.

PERCENTILE 3 The top and bottom whiskers lie at 100− Percentile and
Percentile percent of each bucket’s list. The value must
range between 0 and 25.0.

Table 3.1: Box plot whisker range values

LLSQ = <integer> Indicates that if X and Y have been selected, that
a linear least squares computaion should be performed on the data
and its line drawn with the color given. If this occurs before the
SYMBOL keyword, the symbols will be drawn on top the line if
after, above the line. A legend entry is made with the line color and
the M and B values as in:

y = Mx+B

Every time LLSQ is computed, the two parameters are stored in the
global variables M and B. If multiple lines were fit in one graph, only
the last is available.

POLYNOMIALCOLOR = <integer> If you request a polynomial
curve fit to the data by using the POLYNOMIAL DEGREE op-
tion, this color will be used to draw the line. If you don’t specifiy a
color, then the value of the global POLYNOMIAL COLOR will
be used.

POLYNOMIAL DEGREE = <integer> This option will fit a poly-
nomial of the degree selected to the current data set. The color is se-
lected by the POLYNOMILA COLOR value as described above.
This option does not add an entry for the legend as it’s much too
large. Setting NOISY greater than 1 will dump the computed coef-
ficients to standard output.

The values of the polynomial coefficients are stored in the POLY-
NOMIAL COEFFICIENTS global variable and the degree se-
lected is also stored in POLYNOMIAL DEGREE. If there are
multiple polynomials fit in one graph, only the values for the last one
are available.

SIZE = <number> The size of each bucket. X values lie within 1

2
this

value on either side of the bucket center point. If you don’t include

3.5. BOX 37

the option, the default size is taken from the global BOX SIZE,
normally 1.0. This can have harrowing results if your X range is
large.

WHISKER STYLE = <integer> This option gives a 32 bit bit pat-
tern for displaying the line connecting the quartile box to the whisker.
The default is a dashed line (code 0xF0F0F0F0) taken from the global
variable BOX WHISKER STYLE.

X = <list, vector> This required option must have a list or vector as
its value. The Y values are put into sorted buckets based on their
associated X value and the bucket size.

Y = <list, vector> This required option must have a list or vector as
its value. The Y values are put into sorted buckets based on their
associated X value and the bucket size.

Variables Set: As a result of building the axes, the following variables are set:

MINX The minimum X value used to generate the axes.

MINY The minimum Y value used to generate the axes.

SCALEX The scale computed for the X axis. An X pixel value will be:

Xpixel = XLL+
x−MINX

SCALEX

SCALEY The scale computed for the Y axis. A Y pixel value will be:

Ypixel = Y LL+
y −MINY

SCALEY

XLL The lower left corner X pixel coordinate of the graph area.

YLL The lower left corner Y pixel coordinate of the graph area.

XUR The upper right corner X pixel coordinate of the graph area.

YUR The upper right corner Y pixel coordinate of the graph area.

Errors Detected: In addition to errors detected by the axis display code, the
following errors are detected.

At line nn, missing X/Y values Both X and Y values must be listed.

At line nn, X and Y are different types Their types must be the same.

At line nn, WHISKER STYLE is not an integer This must be a
dashed line value style.

At line nn, RANGE is not an integer The range display type must
be an integer between 0 and 3.

At line nn, RANGE type xx is not known The value must be be-
tween 0 and 3.

38 CHAPTER 3. COMMANDS

At line nn, with RANGE=PERCENTILE, need a PERCENTILE value
You need the PERCENTILE value for PERCENTILE whiskers.

At line nn, CIRCLE size is not an integer The CIRCLE option needs
an integer value.

At line nn, CIRCLE size cc is illegal The circle radius must be be-
tween 1 and some positive value.

At line nn, size of X list and Y lists different The lists for X and
Y must be the same length.

At line nn, X/Y value is not a number Something in the list is not
a number (string, symbol, etc???).

At line nn, size of X and Y vectors different The vectors must be
the same size when used.

Known Deficiencies:

See Also: COLOR command on page 50 and the default color values listed
there, the BAR command on page 26 and BAR3D command on page 30.

Example: The following example reads two files of 1000 pseudo-random num-
bers. The experimentx.bin file contains the uniform distribution X val-
ues as a binary integer vector. The experimenty.bin contains Gaussian
distribution numbers times 100.0. Four different ranges are demonstrated
and the result collected into a 2x2 display.

Note that two of the lines are too long to be displayed and are broken.

// Box plot.

READBIN xvals = "../regression/experimentx.bin"

READBIN yvals = "../regression/experimenty.bin"

IMAGE mnmx WIDTH=320,HEIGHT=200

BOX X=xvals, Y=yvals, SIZE=10, RANGE=MINMAX, XLABEL="MINMAX range", COLOR=RED

IMAGE stdev WIDTH=320,HEIGHT=200

BOX X=xvals, Y=yvals, SIZE=5, RANGE=STANDARD_DEVIATION, XLABEL="Standard Deviation Range",

CIRCLE=2

IMAGE iqr WIDTH=320, HEIGHT=200

BOX X=xvals, Y=yvals, SIZE=10, XLABEL="1.5 IQR range", COLOR=BLUE, WHISKER_STYLE=-1

IMAGE pct WIDTH=320, HEIGHT=200

BOX X=xvals, Y=yvals, SIZE=20, RANGE=PERCENTILE, PERCENTILE=20, XLABEL="20% range",

CIRCLE=1

IMAGE WIDTH=650,HEIGHT=410

3.5. BOX 39

PLACE mnmx, X=0, Y=210

PLACE stdev, X=330, Y=210

PLACE iqr, X=0, Y=0

PLACE pct, X=330, Y=0

BMP "box.bmp"

PS "box.ps"

DISPLAY file="box.bmp"

Figure 3.5: Multiple box plots.

A second example shows how LLSQ can be used to fit a straight line to some
linear data and show its equation in the legend. There are 100 data points (not
all are shown) randomly perturbed about a straight line in both X and Y. The
graph shows these in bins 20 wide with a blue straight line over the data. The
linear least squares equation values are shown in the legend (see Figure 3.6).

READCSV

XValue,YValue

0.489479,0

0.529269,1.42995

...

97.2071,48.9507

97.5944,106.579

99.2232,75.0649

EOF

40 CHAPTER 3. COMMANDS

IMAGE WIDTH=640,HEIGHT=480

BOX

RANGE=STANDARD_DEVIATION,COLOR=RED,X=XValue,Y=YValue,LLSQ=BLUE,SIZE=20,

XLABEL="X",YLABEL="Y"

LEGEND X=50,MESSAGE="Some Data"

GIF "boxllsq.gif"

DISPLAY FILE="boxllsq.gif"

Figure 3.6: Box plot with LLSQ line fit.

3.6. BMP 41

3.6 BMP

Create a Microsoft BMP format image.

BMP<string>

Description: This command takes the current state of the image (if there is
one) and generates a Microsoft BMP format file using the string for a
name. This will be an 8 bit color map image of the size set by the image
command.

Keywords: None.

Errors Detected: The following errors are detected:

At line nn, no image to write No image is available. You must use
an IMAGE command before this.

At line nn, missing file name string The command wasn’t followed
by a string file name.

BMP WRITE: Couldn’t open xxx for output because . . . The writ-
ing routine couldn’t open the output file. The system reason is given.
Typically the directory you want to write to is protected or doesn’t
exist.

See Also: DISPLAY on page 61, GIF on page 71, IMAGE on page 72, PS
on page 87.

42 CHAPTER 3. COMMANDS

3.7 BUCKETS

Create a histogram of data.

BUCKETS <symbol>
DATA = <list>,
LOW = <integer>,

HIGH = <integer>,

BUCKET SIZE = <number>,
TRUNCATE,
ROUND

Description: This simple histogram computation counts the number of entries
that fall within buckets.

Errors Detected: The following errors are detected:

At line nn, missing symbol for BUCKETS The symbol with the data
cannot be found by the parser.

At line nn, symbol sss already defined The X and Y associated sym-
bols to be created already have values. Rather than destroy things,
you should rename the input data.

At line nn, no DATA field for BUCKETS The DATA keyword is re-
quired. It should evaluate to a list.

At line nn, DATA field is empty or wrong The value put forward
for DATA is not a list of numbers.

At line nn, data file contains non-numbers A list element is not a
number.

At line nn, value of LOW is not an integer If the keyword LOW is
present, its value must be an integer.

At line nn, data is only value ddd The data or the range had only
one value ddd associated with it.

At line nn, BUCKET SIZE=bbb > range=rrr The bucket size com-
puted is greater than the range - everything fits into one bucket.

Keywords: The first symbol is mandatory. This must be followed by the
attribute-value keyword list separated by commas.

BUCKET SIZE=<number> Indicates the size of buckets to generate
between the HIGH and LOW values (whether supplied or computed).
If you don’t supply this value, the value of the globalBUCKET SIZE
is used instead. This is normally 1.

3.7. BUCKETS 43

DATA =<list> This keyword must be present. Its value must be a list
of numbers. The values are counted in the appropriate buckets.

HIGH=<integer> If you provide this value, all values in DATA greater
than this will be ignored. If you don’t provide the value, the system
computes the highest value provided by DATA and uses that.

LOW=<integer> If you provide this value, it marks the smallest value
that will be counted. Values smaller than this are ignored. If you
don’t provide this value, it is automatically computed as the smallest
value supplied by DATA.

ROUND If this keyword is present (by itself) values are rounded up
when the bucket is computed.

TRUNCATE If this keyword is present (by itself) values are truncated
to integer when the bucket number is computed.

Known Deficiencies:

See Also: BAR on page 26, BUCKETS on page 42.

Example: Reads a one-dimensional set of data and plots a bar graph of its
histogram.

READONED solitaire="solitaire.dat"

BUCKETS solb truncate, data=solitaire

IMAGE width=640, height=480

AXES_LABEL_FONT = "F8x13bold"

BAR solb XLABEL="Cards Up, mean " + mean(solitaire), YLABEL="Count"

BMP "test.bmp"

This results in the following graph:

44 CHAPTER 3. COMMANDS

Figure 3.7: Results of bucketizing data

3.8. CIRCLES 45

3.8 CIRCLES

Display X, Y, Z data as filled circles. X and Y values are indexed through lists
and have names.

CIRCLES
COLOR = <integer>,

COLORS = <list>,
COUNT = <integer>,

EQUALCOLOR = <integer>,

SIZES = <list>,
XINDEX = <list>,
XNAMES = <list>,
XVALUES = <list>,
YINDEX = <list>,
YNAMES = <list>,
YVALUES = <list>,
. . .Axes keywords . . .
. . .Grid keywords . . .

Description This command plots circles sized in relation to the Z value. Each
X and Y value is indexed into a set of names in XNAMES and YNAMES
whose position in the list becomes the actual X and Y value.

Keywords: See the keywords associated with the axes and grid options that
can be part of this command. In addition, the following are supported:

COLOR = <integer> If this option is present, all circles are drawn
with the indicated color value. If not present (and the COLORS
keyword is also not present, then the circles are draw in black (color
0). The COLOR option overrides the COLORS option if both are
present.

COLORS = <list> If the COLOR option is not present, this specifies
a list of colors to cycle through for each plotted circle. No attach-
ment to names or indices are attempted and when the list runs out,
assignment starts over with the first. This option is overridden by
the COLOR option if both are present.

COUNT = <integer> If this option is present, this number of cir-
cle sizes will be added to the LEGEND display. The circles are
displayed in black, and range from the smallest to largest. If no
COUNT is present, then nothing is added to the legend.

EQUALCOLOR = integer> If this option is present, circles with cor-
responding XVALUES and YVALUES that are equal will be dis-
played in this color. If the color is negative, an unfilled circle of the
positive value will be drawn.

46 CHAPTER 3. COMMANDS

SIZES = <list> This is a required list of circle radii in pixels. These
are rounded up before doing the area fill. The minimum radius is 1
pixel and smaller values will be rounded up to this. The list length
must be the same as that for the XVALUES and YVALUES lists.

XINDEX = <list> This is a list of indices into the XNAMES list.
The first list element corresponds to the zeroth element ofXNAMES.
For all j elements of XVALUES, there’s an ith element of XIN-
DEX with this value:

∀j∃ij , XINDEXij = XVALUESj

The corresponding name (and horizontal position on the graph) is
then:

namej = XNAMESij

XNAMES = <list> This is a list of strings whose position in the list
correspond to the values in the XINDEX list. Both these lists must
have the same length. These names are shown on the horizontal axis
with sufficient space left between entries to fill the available space.
The labels are rotated right to 270 degrees.

XVALUES = <list> This list gives the horizontal axis value for the
displayed circles. These numeric values should have corresponding
entries in XINDEX (see above) that are then converted into integer
horizontal axis positions.

YINDEX = <list> This required list is similar in function to theXIN-
DEX list except that values are for the vertical axis.

YNAMES = <list> This required list is similar in function to the
YNAMES list except that values are labels for the vertical axis.

YVALUES = <!list> These are the vertical axis values. This list has
the same properties and must have the same size as the XVALUES
item.

Variables Set: As a result of building the axes, the following variables are set:

MINX The minimum X value used to generate the axes.

MINY The minimum Y value used to generate the axes.

SCALEX The scale computed for the X axis. An X pixel value will be:

Xpixel = XLL+
x−MINX

SCALEX

SCALEY The scale computed for the Y axis. A Y pixel value will be:

Ypixel = Y LL+
y −MINY

SCALEY

3.8. CIRCLES 47

XLL The lower left corner X pixel coordinate of the graph area.

YLL The lower left corner Y pixel coordinate of the graph area.

XUR The upper right corner X pixel coordinate of the graph area.

YUR The upper right corner Y pixel coordinate of the graph area.

Errors Detected:

Known Deficiencies

See Also: COLOR command on page 50 and the default color values listed
there. The READCSV command on page 90 is the preferred way of
generating lists of values from data.

Example: The following example reads some X,Y data and counts and draws
circles but of 2 times the natural log of the count.

The first data set creates the index/name lists for XINDEX, XNAMES,
and YINDEX, YNAMES.

READCSV

Index,Name

0,"Human"

100,"Dog"

101,"Cat"

102,"Horse"

103,"Duck"

104,"Rat"

105,"Bug"

106,"Bird"

200,"Car"

201,"Truck"

202,"Van"

203,"Bicycle"

204,"Forklift"

205,"Motorcycle"

206,"Airplane"

207,"Train"

208,"Bus"

999,"Unknown"

EOF

The next section creates the data to plot as three lists for XVALUES,
YVALUES, and SIZES.

READCSV

Video,Reality,Count

0,0,100

48 CHAPTER 3. COMMANDS

0,100,20

100,0,15

100,100,25

200,200,5

100,200,5

207,207,12

208,0,1

0,208,1

200,207,25

207,103,12

103,100,188

103,101,40

101,200,29

EOF

Next, we create a list of color values for display. These are simply numbers
selected from the table in section 4.1 on page 115.

READCSV

cv

2

3

4

5

6

7

EOF

Finally, we create the graph using this data. Note that the command is too
line to fit on one line and is split for demonstration.

image width=640,Height=480

CIRCLES XLABEL="Match",YLABEL="Reality",XINDEX=Index,YINDEX=Index,XNAMES=Name,YNAMES=Nam

XVALUES=Video,YVALUES=Reality,SIZE=2 * log(Count),COLORS=cv,COUNT=5

LEGEND

gif "circles.gif"

display file="circles.gif"

This results in the graph in Figure 3.8.

3.8. CIRCLES 49

Figure 3.8: CIRCLES command with sample output

50 CHAPTER 3. COMMANDS

3.9 COLOR

Create or modify a single color.

COLOR <expression>,

RED = <float>,

GREEN = <float>,

BLUE = <float>

Description: The default colormap is defined at startup. You can modify any
of its 256 different colors.

Table 3.2 defines the default colormap - the first 105 values are predefined,
the remaining 151 are available for use. The global variables can be used
in place of numeric color values.

Global Index Description

BLACK 0 Saturated black. (red=0, green=0, blue=0).
WHITE 1 Saturated white. (red=1, green=1, blue=1).

RED 2 Saturated red. (red=1, green=0, blue=0).
YELLOW 3 Saturated yellow. (red=1, green=1, blue=0).
GREEN 4 Saturated green. (red=0, green=1, blue=0).
CYAN 5 Saturated cyan. (red=0, green=1, blue=1).
BLUE 6 Saturated blue. (red=0, green=0, blue=1).

MAGENTA 7 Saturated magenta. (red=1, green=0, blue=1).
GREY60 8 60% grey (red=0.6, green=0.6, blue=0.6).
GREYS 9 3 grey values (9, 10, 11) used for 3D displays.
REDS 12 3 saturated red shades (12, 13, 14) from 0.5 → 1 used for 3D

displays.
YELLOWS 15 3 yellow shades (15, 16, 17) used for 3D displays.
GREENS 18 3 green shades (18, 19, 20) used for 3D displays.
CYANS 21 3 cyan shades (21, 22, 23) used for 3D displays.
BLUES 24 3 blue shades (24, 25, 26) used for 3D displays.

MAGENTAS 27 3 magenta shades (27, 28, 29) used for 3D displays.
ELEVATION 30 The next 96 colors are in 32 element blocks ranging from green →

yellow → red → magenta.
FIRSTFREE 126 Colors from 126 → 255 are not assigned and default to saturated

black (red=0, green=0, blue=0).

Table 3.2: The default color map.

Keywords: The following keywords are recognized. The default color values
are 0. The values specified must range from 0.0 → 1.0 or an error is

3.9. COLOR 51

signaled. At least one parameter must be present, those that aren’t default
to 0.

RED = <float> Specifies the red value for this color.

GREEN = <float> Specifies the green value for this color.

BLUE = <float> Specifies the blue value for this color.

Errors Detected: The following errors are detected.

At line nn, color number mm is illegal The color number shown is
illegal. Only colors 0 → 255 can be set.

At line nn, keyword KEYWORD must be numeric One of the RED/
GREEN, or BLUE keywords has a non-numeric value.

At line nn, r=rrr,g=ggg,b=bbb one of which is illegal One of the
three listed values is outside of the legal range of 0 → 1 inclusive.

See Also: COLORMAP on page 52, IMAGE on page 72.

Example: Examples are scattered throughout the text.

52 CHAPTER 3. COMMANDS

3.10 COLORMAP

Create a set of colors.

COLORMAP
SHADE = <integer>,

COUNT = <integer>,

START = <integer>

Description: The 3D surface routines need a colormap for generating high-
lights based on surface normals. The COLORMAP command creates
single hue colormaps for such purposes.

Keywords: You specify an existing an existing color as a basis (the shade) and
the command creates colors darker than that and lighter than than that.

SHADE = <integer> Specifies an existing color to serve as the medium
display value. Typically this would be a saturated color such as RED.
This option must be present or an error is signaled.

COUNT = <integer> Specifies how many colors to generate. The
larger the number, the smoother the color transitions. If the option
is not specified, the count is taken from the global variable COL-
ORMAP COUNT which defaults to 64.

START = <integer> Specifies which color index to put the first new
shade into (the darkest color sits here). Subsequent shades are writ-
ten higher. This option must be present.

Errors Detected: The following errors are detected.

At line nn, SHADE value must be an integer The shade base (color
index) must be an integer.

At line nn, missing SHADE color index The SHADE value must be
present, there is no default global value.

At line nn, COUNT value must be an integer The COUNT value
must be an integer. It need not be present though.

At line nn, START value must be an integer The starting color in-
dex must be an integer.

At line nn, missing START value The starting value must be present.

See Also: COLOR on page 50 and SURFACE on page 104.

Example: Examples are presented in the SURFACE section on page 104.

3.11. CONTOUR 53

3.11 CONTOUR

Create a contour plot of X,Y,Z data.

CONTOUR
ELEVATION = <array>,

BASIS = <number>,
ALTERNATE = <integer>,

COLOR1 = <integer>,

COLOR2 = <integer>,

XBASE = <number>,
XINC = <number>,
YBASE = <number>,
YINC = <number>,
SHADE = <integer>,

DIRECTION = <integer>,

COLORS = <integer>,

ELEVATION COLOR = <integer>,

ZLOW = <number>,
ZHIGH = <number>,
. . .Axes keywords . . .
. . .Grid keywords . . .

Description: Display a contour plot (with lines) of an array of data. Use
bi-linear interpolation if the data does not cover the plot area.

The command also allows for elevation coloring and slope shading back-
grounds. These options are mutually exclusive - one, the other, neither,
but not both.

Figure 3.9 shows how the elevation of the red dot is computed when we
only have data for the 4 green dots. We first compute ea and eb by the
triangles between the two top and two bottom points respectively. We
then interpolate between these two values in the Y axis to get e.

54 CHAPTER 3. COMMANDS

ea

eb

e

Figure 3.9: Bilinear Interpolation

Keywords: See the keywords associated with the axes and grid commands that
can be part of this command. In addition, the following are supported:

ALTERNATE = <integer> If present with a positive, non-zero value,
then every alternate number of contour lines (starting at 0) is dis-
played with the second color (COLOR2 keyword orCONTOUR COLOR2
global).

BASIS = <number> The basis number indicates where lines should be
drawn. For a pixel in the center, if any of the three comparisons in
Figure 3.10 shows a value less than and a value greater than a value
modulo the basis, a dot is drawn with the appropriate color.

1 2

34

Figure 3.10: Basis computation.

3.11. CONTOUR 55

COLOR1 = <integer> Indicates the color index to use for for display-
ing lines indicating where the surface crosses a BASIS value. If no
color is specified, then the global variable variableCONTOUR COLOR1
(typically BLACK) is used.

COLOR2 = <integer> This option gives the color index for alternate
lines. For example, if your contour lines are every 10 vertical units
you might wish to mark the 100 unit lines with a separate color as
indicated. The default color is taken from CONTOUR COLOR2
global and is by default RED.

COLORS = <integer> For the SHADE andELEVATION COLOR
options, this provides the number of colors used for shading or color
display. If you don’t sepcify the option and you do specify one
of the other displays, the value is taken from the global CON-
TOUR COLORS which defaults to 16.

DIRECTION = <integer> For the SHADE option, this indicates
the direction of the pseudo-sun used for plotting slope values. There
are 8 possible directions with the values 0 → 7 with the names
shown in Table 3.3. If you don’t specify this option and do spec-
ify SHADE, the direction is taken from the default global variable
CONTOUR DIRECTION that is normally set to NW.

Name Value Description

NW 0 Sun in the north west.
N 1 Sun straight north.
NE 2 Sun north east.
E 3 Sun straight east.
SE 4 Sun south east.
S 5 Sun straight south.

SW 6 Sun south west.
W 7 Sun straight west.

Table 3.3: Sun angles for slope shading

ELEVATION COLOR = <integer> Using this option specifies that
elevation coloring should be used as a background for the contour
lines. The integer value corresponds to the color of the lowest value.
The colors are scaled to match the number of colors from the COL-
ORS keyword or default.

SHADE = <integer> When this option is present, elevation shading
is drawn before the contour lines. The slope is computed according
to one of the 8 directions in Table 3.3, that is, in the direction of the
sun. A positive slope results in a bright color and a negative slope
in a darker color. The color values must be set by the COLORMAP

56 CHAPTER 3. COMMANDS

function (see page 52) and the first of these colors is the integer value
of this keyword.

XBASE = <number> Displaying the X and Y values associated with
Z values (the array values) can be modified with a linear equation.
The value displayed with tic marks X is based on the the array index
i as:

X = iXINC +XBASE

If the keyword does not occur in the list, then the global default
CONTOUR XBASE (normally 0.0) is used that when combined
with the default CONTOUR XINC value of 1.0 gives the array
index.

XINC = <number> This is the multiplying value in the linear equation
used to compute X above.

YBASE= <number> Displaying the X and Y values associated with
Z values (the array values) can be modified with a linear equation.
The value displayed with tic marks Y is based on the the array index
i as:

Y = iY INC + Y BASE

If the keyword does not occur in the list, then the global default
CONTOUR YBASE (normally 0.0) is used that when combined
with the default CONTOUR YINC value of 1.0 gives the array
index.

YINC = <number> This is the multiplying value in the linear equation
used to compute Y above.

ZHIGH = <number> Normally the low and high values are computed
during initialization. This overrides the high value for the shade and
color contours.

ZLOW = <number> Normally the low and high values are computed
during initialization. This overrides the low value for the shade and
color contours.

Variables Set: As a result of building the axes, the following variables are set:

MINX The minimum X value used to generate the axes.

MINY The minimum Y value used to generate the axes.

SCALEX The scale computed for the X axis. An X pixel value will be:

Xpixel = XLL+
x−MINX

SCALEX

3.11. CONTOUR 57

SCALEY The scale computed for the Y axis. A Y pixel value will be:

Ypixel = Y LL+
y −MINY

SCALEY

XLL The lower left corner X pixel coordinate of the graph area.

YLL The lower left corner Y pixel coordinate of the graph area.

XUR The upper right corner X pixel coordinate of the graph area.

YUR The upper right corner Y pixel coordinate of the graph area.

Errors Detected: In addition to errors detected by the axis and grid display
code, the following errors are detected.

At line nn, lower left x=xx, and right x=xx are probably bogus
Modifications of LEFT PIXELS and RIGHT PIXELS for the axes
value result in them being out of order (high less than low) which
can’t be.

At line nn, X low (xxx) is greater than or equal to the high value (xxx)
The modifications XLOW and/or XHIGH result in the minimum and
maximum values being out of order (high less than low).

At line nn, missing ELEVATION for contour plot You must spec-
ify an array for the routine to plot.

At line nn, ELEVATION was not an array The value you did give
for the ELEVATION keyword was not an array.

Known Deficiencies: 1. Doesn’t work with irregular spaced points.

2. Not much checking on good parameter values.

3. Can’t associate UTM or authalic coordinates very well yet.

See Also: COLOR command on page 50 and the default color values listed
there, and READBIN on page 88 for reading binary arrays.

Example: The following example reads a binary byte array named ba.bin that
has data for a simulated wave tank and plots its contours.

readbin cosv = "ba.bin" image width=640,hieght=480 contour

elevation=cosv,basis=25,xbase=0,xinc=1.0,ybase=0,yinc=1.0, alternate=5

ps "manual/contour.ps"

58 CHAPTER 3. COMMANDS

Figure 3.11: Wave tank contour plot.

You can add color values behind the contour lines. For example, you can use
the elevation colormap to show the relative height values. The legend generated
by this graph includes a description, range values, and a label. Note that the
CONTOUR line is too long so it extends over two lines for expository purposes.

// Contour plot with color elevation.

READBIN cosv = "ba.bin"

IMAGE WIDTH=640,HEIGHT=480

CONTOUR ELEVATION=cosv,BASIS=25,XBASE=0,XINC=1.0,YBASE=0,YINC=1.0,ALTERNATE=5,

COLOR2=WHITE ELEVATION_COLOR=ELEVATION_COLORS,COLORS=96

LEGEND

PS "contour_elev.ps"

3.11. CONTOUR 59

Figure 3.12: Contour plot with elevation coloring

The final example demonstrates the use of slope shading. We work with the
same data but shade the slopes so that surface normals pointing to the north
east are shaded more white and those to the south west are darker. Note that
the plotting line is too long for the page so it is split to the next.

// Wave tank with shaded background.

READBIN cosv = "ba.bin"

IMAGE width=640,hieght=480

COLOR red,red=0.6, green=0.3,blue=0

COLOR green,red=.3,green=0.5,blue=.1

COLORMAP shade=1, count=16, start=30

CONTOUR ELEVATION=cosv,BASIS=25,XBASE=0,XINC=1.0,YBASE=0,YINC=1.0,COLOR1=green,COLOR2=RED,

ALTERNATE=5,SHADE=30,DIRECTION=NE

PS "contour_shade.ps"

60 CHAPTER 3. COMMANDS

Figure 3.13: Contour plot with slope shading

3.12. DISPLAY 61

3.12 DISPLAY

Display a graph on the screen.

DISPLAY
FILE = <string>,

WITH = <string>

Description: After a graph has been written to a file, this command can be
used to call an operating system level display routine.

Keywords: The file name must be present but the display program is system
dependent.

FILE = <string> This gives the name of a file to display. This key-
value pair must be present or an error is signaled. The display pro-
gram must be selected that can display the format of the file.

WITH = <string> If present, this names the program used to dis-
play the graph named. If not present, an operating system depen-
dent routine is selected (see Table 3.4) that is stored in the DIS-
PLAY WITH global variable.

OS Program Description

Linux eog Displays BMP, and GIF but not postscript images.
MacOS X open Displays all output types.
CYGWIN explorer Should work with most images but Postscript.
Windows explorer Should display just about everything.

Table 3.4: OS default display routines

Errors Detected: At line nn, missing FILE to display You must name
the file to display.

At line nn, FILE key is not a string The name must be a string.

At line nn, WITH key does not have a string value TheWITH pa-
rameter, when present, must have a string value.

Known Deficiencies: Doesn’t check that the program will actually display
the kind of file sent to it.

See Also: BMP on page 41, GIF on page 71, PS on page 87.

62 CHAPTER 3. COMMANDS

3.13 DRAW ARROW

Draw an arrow.

DRAW ARROW < numberx1 >, < numbery1 >, <
numberx2>, <numbery2>,

COLOR = <integer>,

LENGTH = <integer>,

STYLE = <integer>,

WIDTH = <integer>

Description: Draw a line between two points with an arrow head on the end.
The style and values are shown Figure 3.14.

length
w

id
th (x2,y2)(x1,y1)

Figure 3.14: An arrow

Keywords: The keyword list, if present, must be preceded by the 4 numbers.
If these numbers are integers, they are pixel positions. If they are floating-
point values they are a percentage of the image area.

COLOR = <integer> Indicates what color the line should be drawn
in. If this keyword isn’t present, the value stored in the global AR-
ROW COLOR is used (defaults to 0).

LENGTH = <integer> Sets the arrow length (see Figure 3.14) param-
eter - a value in pixels. If this keyword isn’t present the value of the
global ARROW LENGTH is used. Its default value is 10.

STYLE = <integer> Indicates the line style to use where the 32 bit
integer value has a 1 if a COLOR pixel is to be drawn and 0 to not be
drawn. If the option isn’t present, the value is taken from the global
variable ARROW STYLE. The default value is -1: all pixels on.

WIDTH = <integer> Sets the arrow width (see Figure 3.14) parame-
ter to this number of pixels. If this parameter is not included, then
the value of the ARROW WIDTH global is used. It defaults to a
value of 4.

3.13. DRAW ARROW 63

Variables Set: The location of the arrow’s head is saved.

LASTX Set to the integer coordinate value of x2.

LASTY Set to the integer coordinate value of y2.

Errors Detected: The values for the four keywords must be integers or an
error will be signaled.

Known Deficiencies:

See Also: DRAW BEZIER on page 64, DRAW LINE on page 62, and DRAW
TEXT on page 68.

Example: The following example draws a few simple arrows and then shows
up to put an arrow on the end of a Bezier curve.

image width=320,height=200

draw arrow 50, 50, 150, 50, color=red

draw arrow 50, 50, 125, 60, length=20

draw arrow 50, 50, 100, 70, width=10

draw bezier (50, 50) (75,90) (150,95) (220,30) (190, 100) color=blue, count=5, style=252645135

draw arrow prevx, prevy, lastx, lasty, color=blue, width=6

bmp "arrow.bmp"

Figure 3.15: DRAW ARROW with curves

64 CHAPTER 3. COMMANDS

3.14 DRAW BEZIER

Draw a Bezier curve.

DRAW BEZIER (<numberx0
>,<numbery0>) . . .

. . . (<numberxn
>,<numberyn>)

COLOR = <integer>,

COUNT = <integer>,

STYLE = <integer>

Description: Draw a Bezier curve based on the list of control points with the
first and last points going through (x0, y0) and (xn, yn) respectively.

Keywords: The keyword list, if present must be preceded by two or more
number pairs enclosed in parentheses. These form the control points for
the Bezier curve. The following keyword-value pairs are supported.

COLOR = <integer> This option changes the default color found in
the BEZIER COLOR global variable (normally defaults to 0).

COUNT = <integer> This option changes the count of points gener-
ated between control points. Control points that are far apart and
have widely varying locations (generating wavy lines) will need a
larger count than the default value taken from theBEZIER COUNT
global (normally set to 10).

STYLE = <integer> Indicates the line style to use where the 32 bit
integer value has a 1 if a COLOR pixel is to be drawn and 0 to not
be drawn. The default value is taken from the BEZIER STYLE
global variable which defaults to -1: all pixels on.

Variables Set: The last location drawn to is saved.

LASTX Set to the integer coordinate value of xn.

LASTY Set to the integer coordinate value of yn.

PREVX Set to the previous point X coordinate used to generate the
straight line to (xn, yn). This is not the previous control point, but
the interpolated point based on the count between control points.

PREVY Set to the previous point Y coordinate as above.

Using these values allows you to add an arrow head to a curve (see the
following example).

Errors Detected: The values for the three keywords must be integers or an
error will be signaled.

3.14. DRAW BEZIER 65

Known Deficiencies:

See Also: DRAW LINE on page 64, DRAW TEXT on page 68 and DRAW
ARROW on page 62.

Example: The following egregious example draws a cloud with some text.

image width=320,height=200

draw bezier (50,50) (40,75) (65,75) color=blue

draw bezier (lastx,lasty) (60,96) (90,100) color=blue

draw bezier (80,98) (100,140) (120,110) color=blue

draw bezier (117,115) (140,105) (140,90) (130,85) color=blue

draw bezier (135,89) (160,80) (140,65) color=blue

draw bezier (144,67) (160,55) (120,40) (110,55) (90,40) (50,52) color=blue

draw text font=F8x13bold,x=75,y=80,MESSAGE="Cloud", color=6

draw text font=F8x13bold, x=65,y=58,MESSAGE="Computing", color=7

draw line 90, 45,110,0, color=blue

draw line 100,45,120,0, color=blue

draw line 110,45,130,0, color=blue

draw line 120,45,140,0, color=blue

bmp "bez.bmp"

Figure 3.16: Bezier curves making a callout cloud

66 CHAPTER 3. COMMANDS

3.15 DRAW LINE

Draw a straight line between two points.

DRAW LINE<numberx1>,<numbery1>,<numberx2>,

<numbery2>,

COLOR = <integer>,

STYLE = <integer>

Description: Draws a line on the image between two points (x1, y1) → (x2, y2).

Keywords: The keyword list, if present, must be preceeded by the 4 numbers.
If these numbers are integers, they are pixel positions. If they are floating-
point values they are a percentage of the image area.

COLOR = <integer> Indicates what color the line should be drawn
in. If this keyword isn’t present, the value stored in the global
LINE COLOR is used (defaults to 0). LINE COLOR is also
shared with the LINE graph command.

STYLE = <integer> Indicates the line style to use where the 32 bit
integer value has a 1 if a COLOR pixel is to be drawn and 0 to not be
drawn. The default value is taken from the LINE STYLE global
variable which defaults to -1: all pixels on. This global is also shared
with the LINE graph command.

Variables Set: The last location drawn to is saved.

LASTX Set to the integer coordinate value of x2.

LASTY Set to the integer coordinate value of y2.

Errors Detected: The values for the two keywords must be integers or an
error will be signaled.

Known Deficiencies:

See Also: DRAW BEZIER on page 64, DRAW ARROW on page 62, and LINE
on page 76.

Example: This example draws a square box.

image width=320,height=200

draw line 0, 0, 319, 0

draw line LASTX, LASTY, 319, 199

draw line LASTX, LASTY, 0, 199

draw line LASTX, LASTY, 0, 0

draw line 50, 50, 270, 50, color=red

3.15. DRAW LINE 67

draw line lastx, lasty, 270, 150, color=green

draw line lastx, lasty, 50, 150, color=blue

draw line lastx, lasty, 50, 50, color=magenta

bmp "sq.bmp"

Figure 3.17: DRAW LINE example with square

68 CHAPTER 3. COMMANDS

3.16 DRAW TEXT

Draw text on an image.

DRAW TEXT
COLOR = <integer>,

FONT = ,

X = <integer>,

Y = <integer>,

ANGLE = <number>,
MESSAGE = <string>

Description: Draw text somewhere on the image. This allows you to draw
random text in any orientation, anywhere on the image using one of the
5 built-in fonts.

Keywords: The following keywords are defined:

ANGLE = <number> This the angle (in degrees) to draw the text
at. As the fonts are pixels, the angles work best at multiples of 90
degrees. If you don’t present this keyword, the system uses the value
of the global TEXT ANGLE that normally has a default value of
0.0.

COLOR = <integer> Sets the color for drawing the text. If you don’t
include this option, the value of the global TEXT COLOR is used
instead; the default value is usually 0.

FONT = <imagefont> Indicates which font to use. The argument
must be one of those in Table 3.5. The width and height are in pixels
and the zero value is the number of pixels from any descender to the
bottom pixel.

Name Width Height Zero

F5x7 6 7 1
F6x10 6 10 1
F8x13 8 13 2

F8x13bold 8 13 2
F9x15 9 15 3

F12x24 12 24 2

Table 3.5: Defined fonts.

MESSAGE = <string> This keyword must be present; there is no
default value. The value must be a string to display. If the string

3.16. DRAW TEXT 69

has \n in it, the Y axis pixel will be reduced by the font height times
the cos(180angle

π
) and the X axis pixel by the font height times the

sin(180angle
π

).

X = <number> This keyword must be present; there is no global sub-
stitute. If the value is an integer, it indicates the X pixel where the
first text character begins. If it’s a floating-point value, it becomes a
percentage of the image width with 1.0 being 1 pixel beyond the far
right border and 0 the leftmost pixel.

Y = <number> This keyword must be present; there is no global sub-
stitute. If the value is an integer, it indicates the X pixel where the
first text character begins. If it’s a floating-point value, it becomes
a percentage of the image height with 1.0 being one pixel above the
top border and 0.0 being the bottom border.

Variables Set: These are set to the next reasonable location to draw more
text to.

LASTX Set to the integer coordinate as rotated where new text would
start on the next line.

LASTY Set to the integer coordinate as rotated where new text would
start on the next line.

Errors Detected: The following errors are detected:

At line nn, value of FONT keyword is not an image The value of
the FONT keyword must be a known image font (see Table 3.5 for
names).

At line nn, fnt fff is unknown The font listed is not known. The only
defined fonts are those in Table 3.5.

At line nn, missing [X/Y location parameter] The X and Y parame-
ters must be present.

At line nn, missing text MESSAGE to draw You must have a mes-
sage to draw as well.

Known Deficiencies: As the fonts are stored as pixels rather than outlines,
drawing off 90 degree increments is not recommended. The characters will
have holes in them.

See Also: DRAW ARROW ona page 62, DRAW BEZIER on page 64 and
DRAW LINE on page 66.

Example: The following example shows text of the various colors and sizes and
rotates some about a common center.

70 CHAPTER 3. COMMANDS

image width=320,height=200, color=0

yt = 200 - 20

draw text X=100, Y=yt, MESSAGE="This is some 5x7 text", FONT=F5x7, color=1

yt = yt - F6x10_HEIGHT

draw text X=100, Y=yt, MESSAGE="Here is 6x10 text", FONT=F6x10, color = 2

yt = yt - F8x13_HEIGHT

draw text X=100, Y=yt, MESSAGE="And now for 8x13", FONT = F8x13, color=3

yt = yt - F8x13bold_HEIGHT

draw text X=95, Y = yt, MESSAGE = "This is bold 8x13", FONT = F8x13bold, color=4

yt = yt - F9x15_HEIGHT

draw text X=75, Y=yt, MESSAGE="This is the F9x15", FONT=F9x15, color=5

yt = yt - F12x24_HEIGHT

draw text X=75, Y=yt, MESSAGE="Here is F12x24", FONT=F12x24, color=7

draw text x=160, Y=60, MESSAGE=" 0 deg", ANGLE=0, color=1

draw text x=160, Y=60, MESSAGE=" 90 deg", ANGLE=90, color=1

draw text x=160, Y=60, MESSAGE=" 180 deg", ANGLE=180, color=1

draw text x=160, Y=60, MESSAGE=" 270 deg", ANGLE=270, color=1

ps "dt.ps"

display file="dt.bmp"

Figure 3.18: DRAW TEXT example

3.17. GIF 71

3.17 GIF

Create a GIF format image.

GIF <string>

Description: This command takes the current state of the image (if there is
one) and generates a GIF format file using the string for a name. This
will be an 8 bit color map image of the size set by the image command.
This will generate a considerably smaller size file than the BMP or PS
commands..

Keywords: None.

Errors Detected: The following errors are detected:

At line nn, no image to write No image is available. You must use
an IMAGE command before this.

At line nn, missing file name string The command wasn’t followed
by a string file name.

At line nn, couldn’t open xxx for output because . . . The writing
routine couldn’t open the output file. The system reason is given.
Typically the directory you want to write to is protected or doesn’t
exist.

See Also: DISPLAY on page 61, BMP on page 41, IMAGE on page 72,
PS on page 87.

72 CHAPTER 3. COMMANDS

3.18 IMAGE

Create a blank image to draw on.

IMAGE [<name>]
WIDTH = <integer>,

HEIGHT = <integer>,

COLOR = <integer>

Description: Build a blank image to dump. You must execute this command
before any that generate a graphical output. It creates a blank image of
the requested size, and sets all its pixels to the specified background color.

If you include the optional name (a symbol), the image will be stored in
this variable. This allows you to create multiple graphs and put them into
a single image.

Keywords: The three optional keywords each have their own default global
value of the same name. Using the keyword values overrides the global
default values. However, the keyword values are not sticky, they apply to
this command only.

COLOR = <integer> Sets the background color to use. Typically this
is saturated white assigned to the global variable WHITE (by de-
fault 1). This is the default for the BACKGROUND COLOR
global

HEIGHT=<integer> The image height must be an integer greater
than or equal to 100. If this keyword is not present, the global value
of HEIGHT will be used (defaults to 480).

WIDTH=<integer> The width must be an integer greater than or
equal to 100. If this keyword is not present, the global value of
WIDTH will be used (defaults to 640).

Errors Detected: The following errors can occur.

At line nn, Symbol KEYWORD must have an integer value The
global value of one of the default keyword values is not an integer.

At line nn, ww x hh is an unreasonable image size One or other of
the width ww or height hh is less than 100.

At line nn, keyword KEYWORD must have an integer value This
occurs when a keyword value is not an integer (as opposed to the de-
fault global symbol value).

See Also: BMP on page 41, PS on page 87, and COLOR on page 50.

Example:

3.19. LEGEND 73

3.19 LEGEND

Add legend to graph.

LEGEND
BACKGROUND COLOR = <integer>
DECORATION COLOR = <integer>
DECORATION STYLE = <integer>
FONT =
MESSAGE = <string>
X = <integer>
Y = <integer>

Description: Most of the plotting commands generate additional data about
their generated plot. For example, the LINE plot saves the line color,
line style, and a label for each line plotted. These can be formatted and
displayed anywhere on the plot with this command. In addition, you can
add messages to this information, change its font, etc.

Keywords: The LABEL keyword on the various plots provides text for the
legend display. Each plot type generates a stereotypical display within the
legend: scatter plots show the symbol, size, and color, line plots show the
line color and style, etc.

BACKGROUND COLOR = <integer> The legend image is writ-
ten on top the plot image. The legend’s area is normally set by the
color in the global variable LEGEND BACKGROUND COLOR
(typically white = 1). You can override this value with the BACK-
GROUND COLOR key.

DECORATION COLOR = <integer> The legend area is surrounded
by a frame which uses this color as does the text collected from LA-
BEL keys on the plots. If you don’t specify this keyword, the decora-
tion color is taken from the LEGEND DECORATION COLOR
that normally has a value of 0 for black.

DECORATION STYLE = <integer> Line drawing for decorations
uses this style value (see section 4.2 on page 118). If you don’t specify
this option, the value stored in the global LEGEND DECORATION STYLE
is used (typically -1 for solid lines).

FONT = This option specifies the font for displaying text in
the legend. All legend text uses the same font. If you don’t specify
the font, the default in the global LEGEND FONT global that
normally defaults to F6x10.

74 CHAPTER 3. COMMANDS

MESSAGE = <string> You can add text to the legend display as well.
This option can be repeated many times and the strings attached to
them appear starting at the legend’s bottom, one line per message.

X = <integer> If you don’t specify this option, the legend is automati-
cally placed near the upper right hand corner of the plot display area
(the global variables XUR and YUR). You can specify a better
placement by inclujding this option and its corresponding Y value.

Y = <integer> If you don’t specify this option, the legend is automati-
cally placed near the upper right hand corner of the plot display area
(the global variables XUR and YUR). You can specify a better
placement by including this option and its corresponding X value.
You are not required to include both options.

Errors Detected: In addition to errors detected when values are not the right
type, the following are detected:

At line nn, FONT value is not a font The value for the FONT op-
tion is not a known font. The font’s are named and should not be
entered as strings.

At line nn, value of MESSAGE is not a string TheMESSAGE op-
tion must have a string value.

At line nn, LEGEND entry label is not a string This is an inter-
nal error and should not happen. If it does, something is mispro-
grammed.

Example: There are legend examples scattered throughout the text. The fol-
lowing shows how to generate a legend with extra statistics. Both the
scatter plot and legend commands are too long for the text and have been
extended over multiple lines (not syntactically correct).

READCSV "minesweeper.csv"

IMAGE WIDTH=640, HEIGHT=480

AXES_LABEL_FONT = F12x24

SCATTER SIZE=4,COLOR=RED,X=Count,Y=Time,LABEL="Count vs time",SYMBOL=TRIANGLE,

XLABEL="Mean "+mean(Time),YLABEL="Seconds"

LEGEND MESSAGE="Count Mean = "+Mean(Count),

MESSAGE="Count Standard Deviation "+standarddeviation(Count),

MESSAGE="Time range "+min(Time)+"->"+max(Time)+" seconds",

MESSAGE="MineSweeper",FONT=F8x13,Y=300

BMP "test3.bmp"

DISPLAY FILE="test3.bmp"

3.19. LEGEND 75

Figure 3.19: Legend construction and display

76 CHAPTER 3. COMMANDS

3.20 LINE

Line graph data.

LINE
COLOR = <integer>,

STYLE = <integer>,

X = <list, vector>,

Y = <list, vector>
LABEL = <string>,

LINE = <any>,

MARKS = <integer>,

SIZE = <integer>,

MARK COLOR = <integer>,

. . .Axes keywords . . .

. . .Grid keywords . . .

Description: Plots a line graph of X and Y data. Multiple data sets are
permitted - they can be plotted with different colors and line styles.

Keywords: See the keywords associated with the axes and grid options that
can be part of this command. In addition, the following are supported:

COLOR = <integer> Indicates the color index to use for the next
line display. If no color is given, the value in the global variable
LINE COLOR (typically BLACK) is used.

LABEL = <string> Causes an entry to be made in the legend for this
plot. A short line of the currently selected color is drawn and the
text of the string follows it. If you don’t include a LABEL, no entry
in the legend will be made. The label for a line should be included
after the color and style are set, but before the actual plotting (X
and Y values).

STYLE = <integer> This option gives a 32 bit bit pattern for display-
ing the line. The default is a solid line (code -1) taken from the global
variable LINE STYLE.

X = <list, vector> This required option must have a list or vector as
its value. If a Y keyword has already been found, the line is plotted
and the X and Y values are erased to wait for more.

Y = <list, vector> This required option must have a list or vector as
its value. If an X keyword has already been found, the line is plotted
and the X and Y values are erased in preparation for the next line.

3.20. LINE 77

LINE = <integer> You can place marks on line points similar to the
SCATTER plot. If you include this in the form LINE = none,
the line will not appear but marks will. This is not sticky, the next
data set will revert to normal line drawing.

MARKS = <integer> Marks will be placed on the line as in the SCAT-
TER plotter. The integer value must be one of those in Table 3.7
on page 94. The value is not sticky and the next data values revert
to a plain line.

SIZE = <integer> The drawn marks on top the line will have this size
which works best if the value is a multiple of 2. If no value is given,
the default size is 3.

MARK COLOR = <integer> Sets the mark color to this value if
marks are present. The value defaults to 0 and is not sticky.

The order of the above keywords is important as they can occur multiple
times for multiple lines. COLOR and STYLE are sticky between lines until
changed by further occurrences. X and Y are not and must be specified
for each line to be plotted.

Variables Set: As a result of building the axes, the following variables are set:

MINX The minimum X value used to generate the axes.

MINY The minimum Y value used to generate the axes.

SCALEX The scale computed for the X axis. An X pixel value will be:

Xpixel = XLL+
x−MINX

SCALEX

SCALEY The scale computed for the Y axis. A Y pixel value will be:

Ypixel = Y LL+
y −MINY

SCALEY

XLL The lower left corner X pixel coordinate of the graph area.

YLL The lower left corner Y pixel coordinate of the graph area.

XUR The upper right corner X pixel coordinate of the graph area.

YUR The upper right corner Y pixel coordinate of the graph area.

Errors Detected: In addition to errors detected by the axis display code, the
following errors are detected.

At line nn, COLOR is not an integer The value of a COLOR key-
word is not a valid integer.

At line nn, STYLE is not an integer The value of a STYLE keyword
is not a valid integer.

78 CHAPTER 3. COMMANDS

At line nn, mismatched structures or lengths are different The X
and Y values are not of the same length or type. Both must be lists
or both must be identical vectors.

Known Deficiencies:

See Also: COLOR command on page 50 and the default color values listed
there. The SORT command on page 102 must be used to assure that
values are sorted along at least one axis.

Example: The following example reads cos and sin curves and plots them on
the same surface.

readcsv "cos.csv"

readcsv "sin.csv"

image width=640, height=480

line color=red,x=X,y=cosX,color=blue,x=X,y=sinx,XLABEL="Plotted by "+VERSION

bmp "test4.bmp"

Figure 3.20: Multiple line graphs.

3.21. LLSQ 79

3.21 LLSQ

Generate data for linear least-squares fit to data.

LLSQ<X−symbol> <Y −symbol>

Description: Compute the linear-least-squares fit equation for the set of X and
Y points <X−symbol> and <Y−symbol>. These are lists or vectors of
points from input or other calculations.

The symbols must have list or vector values. They must have the same
number of elements and their contents must be numeric. The results are
the coefficients of y = mx + b for a line that minimizes the error squared
for each pair of X and Y points.

The command creates two new symbols for a two point line based on
this equation. The first point is the point with X set to the minimum
value of the original X values but with a Y value from the linear equa-
tion computed. The second is the same, but the X value is the largest
of the original values. These are assigned to the names of the original
symbols but are prefixed with LLSQ Thus, for two symbols X, and
COSX, the new line created would have coordinates stored in LLSQ X
and LLSQ COSX.

Keywords: None.

Errors Detected: At line nn, for linear least squares, XY list has non-number in it
Something in a list wasn’t a number. The either X or Y is specified.

At line nn, need at least 2 entries for linear least squares You need
at least 2 points to fit the line to.

At line nn, different length lists for linear least squares You must
have the same number of X and Y points - they’re pairs.

At line nn, vertical line for linear least squares You can’t fit a lin-
ear equation as above to a vertical line.

At line nn, for linear least squares missing XY values The parser
couldn’t find one or both of the data points to fit.

At line nn, for linear least squares, ’sss’ has no value One of the
variables sss has no value.

At line nn, for linear least squares, ’xxx’ is a list but ’yyy’ is not
The Y value is not a list.

See Also:

Example: Fits a straight line to some in-line data. Not all the data is shown.
The result of the computation is two new lists in the variables llsq x and
llsq cosx.

80 CHAPTER 3. COMMANDS

readcsv

x,cosx

3,100

4,100

6,99

8,99

.

.

.

270,0

350,100

360,100

EOF

llsq x cosx

image width=640, height=480

line color=red,x=x,y=cosx,color=blue,x=llsq_x, y=llsq_cosx

bmp "test6.bmp"

Figure 3.21: Linear Least Squares fit to partial COS curve

3.22. PIE 81

3.22 PIE

Pie chart.

PIE
ANGLE = <number>,
COLORS = <list>,
NAMES = <list, vector>,

OUTLINE,
OUTTAKE = <integer>,

PIXELS = <integer>,

RADIUS = <number>,
START ANGLE = <number>,
VALUES = <list, vector>,

. . . Some axes keywords . . .
AXES LABEL FONT = <imagefont>,

DECORATION COLOR = <integer>,

XLABEL = <string>,

YLABEL = <string>

Description: Draw a pie chart from a list or vector of numbers. The values
need not add up to 100%, but are normalized so that the total set en-
compasses 360 degrees. You can also provide a list of labels that match
the values and a list of colors to cycle through. To emphasize a portion,
a particular piece can be partially removed from the pie to highlight its
contributions.

Keywords: In addition to a few of the axes control values, the following key-
words are accepted by the pie charter.

ANGLE = <number> The pie slices are wedge shaped polygons with
the distance between round points determined by this central angle
(in degrees) and the radius. If the option is not present, the value is
taken from the global PIE ANGLE that defaults to 1

2
degree.

COLORS = <list> Each pie slice is drawn with a color selected in
sequence from a list either provided by the user with this keyword or
taken from the default list PIE COLORS. The list need not have
as many members as the list or vector of values. When the list runs
out, color selection starts over. The default list is the 6 colors, RED,
YELLOW, GREEN, CYAN, BLUE, and MAGENTA.

NAMES = <list, vector> This option provides a list or vector of tags
for each pie slice. The type and number must correspond to the
number of values.

82 CHAPTER 3. COMMANDS

OUTLINE If this keyword is present, Each pie wedge has an outline
drawn around it using the decoration color. If the option is not
present, no such outline is drawn.

OUTTAKE = <integer> If this option is present, the nth (starting
at 0) pie wedge and its title slides out from the center along a line
running down its center angle. The number of pixels moved can be
changed. Only one pie wedge can be highlighted in this manner.

PIXELS = <integer> If the OUTTAKE option is present, this value
indicates how many pixels the wedge is moved from the center. If this
option isn’t present, the value is taken from thePIE OUTTAKE PIXELS
global variable that defaults to 20.

RADIUS = <number> Normally the pie size is computed to fit the
available space. This computation is not always successful so the
user can override the default computation with this option. Note that
the pie center position always falls in the plot areas center suitably
modified for the presence of XLABEL and YLABEL.

START ANGLE = <number> The first pie slice can start at any an-
gle with this option. If it’s not present, then the first angle is taken
from the PIE START ANGLE global variable.

VALUES = <list, vector> This key must be present and identifies the
values for each pie wedge. A wedge vi’s angle is:

Wi = 360
vi

∑n−1

j=0
vj

If there are NAMES values, they must correspond in type and num-
ber or an error will be signaled.

The AXES LABEL FONT, DECORATION COLOR, XLABEL,
and YLABEL keys can also be present and modify the display appropri-
ately.

Variables Set: none.

Errors Detected: In addition to errors detected by the axis display code, the
following errors are detected.

At line nn, PIXELS value pp is < 1 or > 100 The number of pix-
els offset must be greater than 0 (or why bother) and is reasonably
less than 100.

At line nn, missing required VALUES option The VALUES key must
be present or there is nothing to plot.

At line nn, VALUES is not a list or vector The VALUES key must
be a list, integer vector, or floating-point vector or an error is signaled.

3.22. PIE 83

At line nn, COLORS value must be a list The COLORS key must
be a list of small integers that match values in the current colormap.

At line nn, ANGLE value aaa is bad The angle value listed is less
than or equal to 0 or greater than 45. Large angles (more than a few
degrees) make for very choppy looking pies. Zero or negative values
cause the plot algorithms to fail.

At line nn, NAMES is not a vector like VALUES For vectors both
NAMES and VALUES must be vectors. You can’t mix lists and vec-
tors.

At line nn, VALUES size vv not the same as NAMES mm The vec-
tors must be the same size.

Known Deficiencies: Doesn’t work with vectors yet.

See Also: COLOR command on page 50 and the default color values listed
there. COLORMAP on page 52 can also be used to create colors.

Example: The PIE command line is two long for one line and has been split
to include all of it.

readcsv

system,colorindex,amperage

"Supervisor",2,0.759

"Esad",3,2.5

"PCS",4,0.1

"UI",5,0.35

EOF

image width=640,height=480

AXES_LABEL_FONT = F8x13bold

PIE NAMES=system,VALUES=amperage,COLORS=colorindex,OUTTAKE=3,PIXELS=25,OUTLINE,

START_ANGLE=25,XLABEL="A PIE Chart",YLABEL="What’s your piece?"

ps "../manual/pie.ps"

84 CHAPTER 3. COMMANDS

Figure 3.22: Pie chart example

3.23. PLACE 85

3.23 PLACE

Copy one image onto another.

PLACE<name>,
X = <integer>,

Y = <integer>

Description: Take the image stored in the variable <name> and copy it to
the current image with its lower left corner at pixel (X,Y).

Keywords: Both keys X and Y must be present.

X = <integer> Sets the X location where the lower left corner of the
image to copy goes. Must be present.

Y = <integer> Sets the Y location where the lower left corner of the
image to copy goes. Must be present.

Errors Detected: The following errors can occur.

At line nnn, no image to place image into You must have an image
(created by the IMAGE command) before doing a place.

At line nnn, near column mm, missing symbol to place The first
item following PLACE must be a defined symbol.

At line nnn, near column mm, missing , There must be a comma
following the symbol to place.

At line nnn, missing X/Y parameter You must have both X and Y
in the parameter list.

At line nnn, value of X/Y is not an integer The value of these pa-
rameters must be integers.

See Also: IMAGE on page 72.

Example:

image sol width=300, height=200

READONED solitaire="solitaire.dat"

BUCKETS solb TRUNCATE, DATA=solitaire

AXES_LABEL_FONT = "F8x13bold"

BAR solb XLABEL="Cards Up, mean " + mean(solitaire), YLABEL="Count"

READCSV "minesweeper.csv"

image mine width=300, height=200

scatter size=2, color=BLUE, X=Count,Y=Time, symbol=TRIANGLE

image width=600,height=200

place sol,x=0,y=0

86 CHAPTER 3. COMMANDS

place mine,x=300,y=0

bmp "comp.bmp"

Figure 3.23: Two graphs in one using PLACE

3.24. PS 87

3.24 PS

Generate a Postscript image.

PS<string>

Description: This command takes the current state of the image (if there is
one) and generates a Postcript format file using the string for a name. This
will be an 8 bit color map image of the size set by the image command.

Errors Detected: The following errors are detected:

At line nn, must declare IMAGE first No image is available. You
must use an IMAGE command before this.

At line nn, missing file name The command wasn’t followed by a string
file name.

At line nn, file ’fff’ couldn’t be opened for output The writing rou-
tine couldn’t open the output file. Typically the directory you want
to write to is protected or doesn’t exist, or, some display program
has it open.

Keywords: None.

See Also: BMP on page 41, GIF on page 71, IMAGE on page 72, and
DISPLAY on page 61

88 CHAPTER 3. COMMANDS

3.25 READBIN

Read binary array data.

READBIN <symbol>= <string>

Description: Read a binary file and store the value in the symbol listed. The
binary files are stored as little-endian (least significant byte first) values.
Unlike the ASCII file readers, input can not come directly from the control
file.

Arrays are in storage order. The first element is [0,0], the next [0,1], and
so on. The first subscript (the column) varies the least often.

The first byte of a binary file tells what type it is:

First
Byte File Type
Value

0 The file is an integer vector (32 bit integers) of fixed size. The next
4 bytes indicate how many entries it has.

1 The file is a double-precision floating-point vector of fixed size. The
next 4 bytes indicate how many entries it has.

2 The file is a byte array. The next 4 byte contain the number of
lines (columns) and the subsequent 4 bytes the number of samples
(rows).

3 The file is a 32 bit integer array. The next 4 byte contain the
number of lines (columns) and the subsequent 4 bytes the number
of samples (rows).

4 The file is a double-precision floating-point array. The next 4 byte
contain the number of lines (columns) and the subsequent 4 bytes
the number of samples (rows).

Table 3.6: Binary File Types

Keywords: None.

Errors Detected: The following errors are detected:

At line nn, near column mm, missing symbol to assign to The first
token following the command must be a symbol.

At line nn, near column mm, missing = sign There must be an equal
sign following the symbol.

At line nn, near column mm, missing file name (string) There must
be a string following the = sign. Expressions are not permitted.

3.25. READBIN 89

At line nn, couldn’t open ’fname’ for input - Couldn’t open the in-
put file named. It probably doesn’t exist or the directory list is wrong.
You can’t include $ variables in them.

At line nn, file ’fname’, binary file type dd unknown - The file type
(the first byte) is not 0 - 4 (the number is listed).

At line nn, premature EOF on file ’fname’ The file wasn’t long enough.

See Also: READCSV on page 90, READONED on page 92.

Example: Examples can be found in the SURFACE section on page 104 and
the CONTOUR section on page 53.

90 CHAPTER 3. COMMANDS

3.26 READCSV

Read a CSV file.

READCSV [<string>]

Description: This command reads a simple CSV (comma separated values)
file, a Microsoft format used by the EXCEL spreadsheet program among
others. The first record of this file is a list of symbols separated by com-
mas. These become variable names that get assigned a list of their corre-
sponding column values. The file is read to the end and lists collected for
each column. A missing value is treated as a floating-point 0. Random
collections of integers, strings, and floating-point values are permitted.

If the command is followed by a string, then the input comes from a file
of that name. If the command appears by itself, then input comes from
the command file and is terminated by the symbol EOF.

Keywords: None.

Errors Detected: The following errors are detected:

At line nn, missing string file name The command must be either
followed by a string or nothing. Numbers and symbols are not per-
mitted.

Premature EOF on file fname The input file ended in the middle of
a line.

File fname has no header line The first line of the input file is blank.

File fname header line ends with comma Just like it says. Empty
column names are not permitted.

File fname header has non symbol or string Only symbols and strings
are allowed on the header line.

File fname has bad token in place of comma Probably missing a comma.

File fname, line nnn, too many values There are more values on a
data line than there were symbols on the header line. They must be
the same.

File fname, line nnn, non-numeric value Only numbers and strings
are allowed the the data fields.

File fname, line nnn, invalid token after comma Some other punc-
tuation, string, or symbol appeared after a comma.

Note that if input is coming from the command line file, that file name
will appear in error messages.

3.26. READCSV 91

See Also: READONED on page 92.

Example: The following example reads a set of 4 data points in three columns.

READCSV

A, B, C, D

1,2,3,4

-2,3,5,22

-5,3,15,0

6,343,4,5

EOF

92 CHAPTER 3. COMMANDS

3.27 READONED

Read a file of ASCII numbers.

READONED <symbol> [<string>]

Description: Reads a file of numbers creating an ordered list that is stored in
the symbol given. If a string follows this symbol, it is the name of a file to
read. If no symbol follows, then input comes directly from the command
file and is terminated by EOF.

Keywords: None.

Errors Detected: The following errors are detected:

At line nn, missing symbol to assign list to No symbol followed the
command. Unlike CSV files, these files do not have their variable
name embedded.

At line nn, symbol ’xxx’ already defined The symbol you listed al-
ready has a value. Use a different one.

At line nn, missing file name to read There needs to be a string or
nothing following the symbol.

At line nn in fname, non-numeric token Only numbers are allowed
in the file.

Note that if input is coming from the command line file, that file name
will appear in error messages.

See Also: READCSV on page 90.

Known Deficiencies: Doesn’t yet work with input from the command file.

Example: The following example reads a set of 10 data points from the com-
mand file. These are assigned (as a list) to the ’values’ variable.

READONED values

1

2

0

9

22

34

3

0

23

10

EOF

3.28. SCATTER 93

3.28 SCATTER

Generate a scatter plot for one or more data sets.

SCATTER
COLOR = <integer>,

LABEL = <string>,

LLSQ = <integer>,

POLYNOMIAL COLOR = <integer>,

POLYNOMIAL DEGREE = <integer>,

SIZE = <integer>,

SIZES = <list, vector>
SYMBOL = <integer>,

X = <list, vector>
Y = <list, vector>
. . .Axes keywords . . .

Description: Plots a scatter graph of X and Y data. Multiple data sets are
permitted - they can be plotted with different colors and symbols. Symbol
sizes can be fixed or sized.

Keywords: See the keywords associated with the axes and grid commands that
can be part of this command. In addition, the following are supported:

COLOR = <integer> Indicates the color index to use for the next plot
data. If no color is given, the value in the global variable SCAT-
TER COLOR (typically BLACK) is used.

LABEL = <string> Indicates a label to attach to the current group
that will be part of a legend. The current plot symbol will appear in
the appropriate color folllowed by this string.

LLSQ = <integer> Indicates that if X and Y have been selected, that
a linear least squares computaion should be performed on the data
and its line drawn with the color given. If this occurs before the
SYMBOL keyword, the symbols will be drawn on top the line if
after, above the line. A legend entry is made with the lines color and
the M and B values as in:

y = Mx+B

At the completion of the SCATTER command, the global variables
M and B are set to the two coefficients. If multiple LLSQ options
are present, these values represent that last computed.

94 CHAPTER 3. COMMANDS

POLYNOMIAL COLOR = <integer> If you request a polynomial
curve fit to the data by using the POLYNOMIAL DEGREE op-
tion, this color will be used to draw the line. If you don’t specifiy a
color, then the value of the global POLYNOMIAL COLOR will
be used.

POLYNOMIAL DEGREE = <integer> This option will fit a poly-
nomial of the degree selected to the current data set. The color is se-
lected by the POLYNOMILA COLOR value as described above.
This option does not add an entry for the legend as it’s much too
large. Setting NOISY greater than 1 will dump the computed coef-
ficients to standard output.

The coefficients will also be stored in a vector in the POLYNO-
MIAL COEFFICIENTS global variable. You can use the IN-
DEXED function coupled with DRAW TEXT to display these
values. A legend entry is not created.

SIZE = <integer> This option sets the radius of the scatter plot sym-
bol. The size is sticky between plots. If no value is set, the default
from the SCATTER SIZE global is used (usually 2).

SIZES = <list, vector> If this option is present, the next symbol spec-
ified takes its sizes from this list or vector. The type and size must
be the same as that for X and Y. Unlike X and Y, the SIZES list
is not sticky and disappears after a set is plotted.

SYMBOL = <integer> This option sets the symbol to use for the next
data set. Table 3.7 defines the global variables and their values.

Global Value Description

CIRCLE 0 A circle (the default symbol).
SQUARE 1 A square centered on the point. Each side is 2SCATTER SIZE + 1.

TRIANGLE 2 An equilateral triangle.
PLUS 3 A centered plus sign. Each line is 2SCATTER SIZE + 1.

ASTERISK 4 A square asterisk.
FILLEDCIRCLE 5 A filled circle.

DIAMOND 6 A diamond.

Table 3.7: Scatter plot symbols

The plot only occurs when the SYMBOL keyword appears - there
must be an X and Y value before it.

X = <list, vector> This required option must have a list or vector as
its value.

Y = <list, vector> This required option must have a list or vector as
its value.

3.28. SCATTER 95

The order of the above keywords is important as they can occur multiple
times for multiple scatters. COLOR and STYLE are sticky between scat-
ters until changed by further occurrences. X and Y are not and must be
specified for each scatter to be plotted.

Variables Set: As a result of building the axes, the following variables are set:

MINX The minimum X value used to generate the axes.

MINY The minimum Y value used to generate the axes.

SCALEX The scale computed for the X axis. An X pixel value will be:

Xpixel = XLL+
x−MINX

SCALEX

SCALEY The scale computed for the Y axis. A Y pixel value will be:

Ypixel = Y LL+
y −MINY

SCALEY

XLL The lower left corner X pixel coordinate of the graph area.

YLL The lower left corner Y pixel coordinate of the graph area.

XUR The upper right corner X pixel coordinate of the graph area.

YUR The upper right corner Y pixel coordinate of the graph area.

Errors Detected: In addition to errors detected by the axis display code, the
following errors are detected.

At line nn, value of SIZE parameter not an integer The symbol ra-
dius must be an integer.

At line nn, value of COLOR parameter not an integer The color
parameter must be an integer ranging from 0 → 255.

At line nn, value of SYMBOL is not an integer The value for a sym-
bol isn’t an integer.

At line nn, missing X or Y value to scatter plot You must have an
X and Y value assigned when the SYMBOL keyword appears.

Known Deficiencies: Needs clipping so symbols don’t go outside of plot area.
Only works with lists.

See Also: COLOR command on page 50 and the default color values listed
there.

Example:

96 CHAPTER 3. COMMANDS

READCSV "minesweeper.csv"

BACKGROUND_COLOR = WHITE

image width=640,height=480

scatter size=4, color=RED, X=Count,Y=Time, symbol=TRIANGLE, llsq=BLUE,

XLABEL = "Mean " + mean(Time), YLABEL = "Seconds"

legend MESSAGE="Count Mean = "+Mean(Count),

MESSAGE="Count Standard Deviation "+standarddeviation(Count),

MESSAGE="Time "+min(Time)+"->"+max(Time), MESSAGE="MineSweeper",

FONT=F8x13, Y=300BMP "minesweeper.bmp"

Figure 3.24: Scatter plot.

The next example demonstrates how symbol sizes can be modified. We read
a small CSV file that looks like:

INDEX,COUNT,IMPULSE

1, 1, 1.25

4, 5, 10.0

6, 1, 40.0

7, 1, 80.0

9, 6, 320.0

10, 8, 640.0

11, 3, 1280.0

13, 1, 5120.0

14, 1, 10240.0

3.28. SCATTER 97

The script line for plotting is too long so is split across two lines. We take
X from the INDEX value but Y is the log base two of the IMPULSE times the
COUNT column. The SIZES are taken from the COUNT column but with a
minimum size of 3. We set the high X value to 15 so that the final symbol is
not truncated.

READCSV "scatter.csv"

IMAGE

SCATTER X=INDEX,Y=log2(IMPULSE*COUNT),SIZES=COUNT + 3,COLOR=RED,SYMBOL=TRIANGLE,

XLABEL="MOTOR SIZE",XHIGH=15,YLABEL="TOTAL IMPULSE FLOWN"

PS "scatter2.ps"

Figure 3.25: Using symbol size to depict extra information

The next example demonstrates how to use the polynomial regression to fit
a curve to your data and then display the results. We first generated 10 data
points randomly perturbed for interest. We plot these on a scatter plot with
red triangles and then draw a 2nd degree polynomial to fit this data in blue.
This is all drawn on an imaged named ’gr’.

The second task creates another image with just text drawn in it. This dis-
plays a heading, the polynomial degree taken from thePOLYNOMIAL DEGREE
parameter of the scatter plot. Finally, we use the INDEXED function to gen-
erate a multi-line string from the vector of parameters created when the last
POLYNOMIAL DEGREE command was executed.

Finally, we combine these two images to make a third with the results shown
in Figure 3.26.

98 CHAPTER 3. COMMANDS

READCSV

Xvalue, YValue

0.489479,0

0.529269,1.42995

2.23421,4.58672

3.47596,10.2601

4.46933,15.9008

5.08902,25.4647

6.15147,34.6383

6.78428,52.0333

8.03008,60.6

8.98747,84.4402

EOF

IMAGE gr WIDTH=320,HEIGHT=240

SCATTER

COLOR=RED,X=Xvalue,Y=YValue,SYMBOL=TRIANGLE,POLYNOMIAL_COLOR=BLUE,

POLYNOMIAL_DEGREE=2

IMAGE DEGS WIDTH=200,HEIGHT=240

LASTY = 220

DRAW TEXT FONT=F8x13Bold,X=0,Y=LASTY,MESSAGE="Polynomial Curve Fit\n"

DRAW TEXT FONT=F6x10,X=0,Y=LASTY,MESSAGE="Degree: " + POLYNOMIAL_DEGREE

DRAW TEXT FONT=F6x10,X=0,Y=LASTY,MESSAGE="Coefficients:\n" + indexed(POLYNOMIAL_COEFFICI

IMAGE WIDTH=520,HEIGHT=240

PLACE gr,X=0,Y=0

PLACE degs,X=320,Y=0

GIF "pregr.gif"

DISPLAY FILE="pregr.gif"

Figure 3.26: Polynomial regression curve for random data.

3.28. SCATTER 99

Figure 3.27 shows what happens if you use two high a polynomial degree
for the data. The only change we made to get this graph is the POLYNO-
MIAL DEGREE value in the SCATTER plot line.

Figure 3.27: Polynomial regression curve for random data, too high a degree.

100 CHAPTER 3. COMMANDS

3.29 SHOW

Display a variable’s value.

SHOW <symbol>

Description: Display the symbol’s value. For lists, display all top level entities
enclosed in parentheses. Same for all types of vectors but show the vector
type as well. For image fonts, show the width, height, and zero offset.

Errors Detected: None. If you name a variable without a value, its value is
NULL.

Known Deficiencies: Doesn’t even try to do arrays.

See Also: SYMBOL on page 110.

Example: The following example reads a single column CSV file, computes a
histogram, and shows some of the results.

// Test show command.

READCSV

value

5

5

. . .many more values . . .

10

13

13

EOF

SHOW value

BUCKETS val TRUNCATE, DATA=value

SHOW val_x

SHOW FINEDOTDASH

SHOW VERSION

SHOW F6x10

This results in the following output:

2: READCSV

File test18.graph had 47 entries

52: SHOW value

value = (5

5

. . .many more values . . .

3.29. SHOW 101

13

13

)

53: BUCKETS val TRUNCATE, DATA=value

11 buckets created

Finished buckets

54: SHOW val_x

val_x = #vectorFloat[

0: 5.000000

1: 6.000000

2: 7.000000

3: 8.000000

4: 9.000000

5: 10.000000

6: 11.000000

7: 12.000000

8: 13.000000

9: 14.000000

10: 15.000000

]

55: SHOW FINEDOTDASH

FINEDOTDASH = -151587082

56: SHOW VERSION

VERSION = "graph V1.01.004"

57: SHOW F6x10

F6x10 = #imagefont[base=32,width=6,height=10,zero=1]

Toodles!

102 CHAPTER 3. COMMANDS

3.30 SORT

Sort data.

SORT [ASCENDING |DESCENDING]<sort> (
<symbol>[,]*)

Description: Sort a list or vector into ascending or descending order. Addi-
tional data items may also “tag along” with the sort - they follow the
original values during the sort.

There are no attribute-value parameters. One of the two keywords AS-
CENDING or DESCENDING should appear after the SORT command.
If it doesn’t, then the first symbol is assumed to name the structure to
sort into ascending order. One of the keywords indicates what order the
values must be sorted into. <sort> must be a symbol with a list or vec-
tor value. It can be followed by one or more other symbols, separated by
commas and enclosed in parentheses. These tag along with the structure
being sorted.

Keywords: None.

Errors Detected: At line nn, missing symbol to sort There wasn’t a sym-
bol with a value to sort. This usually happens when ASCENDING
or DESCENDING is spelt wrong.

At line nn, symbol sss has no value A symbol to sort has no value.

At line nn, sort list is missing The parser detected something follow-
ing the symbol to sort but it wasn’t a left parenthesis.

At line nn, tag along sort value is not a list All the structures be-
ing sorted must be the same type and have the same size.

At line nn, tag along list isn’t the same size as the sorted list All
the structures being sorted must be the same type and have the same
size.

At line nn, sorting value is not a number Only numbers can be sorted.

Known Deficiencies:

Example: This example reads two data columns and sorts them into descend-
ing order based on the value of the first column ’rx’.

readcsv

rx,ry

1,34

99,12

33,67

3.30. SORT 103

66,12

2,997

EOF

sort descending rx (ry)

symbol table

104 CHAPTER 3. COMMANDS

3.31 SURFACE

Surface plot of three dimensional data.

SURFACE
AXES FILL = <integer>,

BOUNDARY,
BOUNDARY COLOR = <integer>,

COLOR = <integer>,

DECORATION COLOR = <integer>,

GRID COLOR = <integer>,

GRID STYLE = <integer>,

HEIGHT = <array>,

LIGHT U = <number>,
LIGHT V = <number>,
LIGHT W = <number>,
ROTATEY = <number>,
SHADING = <integer>,

SIZE = <integer>,

XOFF = <number>,
YOFF = <number>,
ZOFF = <number>,
. . .Axes keywords . . .

Description: Display a 3D surface in front of some axes. Y is up, Z is front to
back, and X is left to right. You can use flat shading with polygon outlines,
elevation color shading or diffuse shading with a vector light source.

Keywords: In addition to some of the axes keyword-value pairs, the following
are supported or required.

AXES FILL = <integer> When present, this keyword sets the area
fill color value for the 3 planes defining the X,Y,Z axes. The default
global value is taken from SURFACE AXES FILL that defaults
to 9, a sort of light grey.

BOUNDARY When this keyword is present, the surface’s quadrilaterals
will be outlined with the BOUNDARY COLOR or its default
SURFACE BOUNDARY COLOR. The default is to not outline
the quadrilaterals unless the SHADING option is FLAT.

BOUNDARY COLOR = <integer> If theBOUNDARY option ap-
pears, then set the drawing color to this index. If this option doesn’t
appear use the default value in the global SURFACE BOUNDARY COLOR
(typically 0 which is black).

3.31. SURFACE 105

DECORATION COLOR = <integer> Sets the color for the various
decorations. This defaults to the global DECORATION COLOR
which is typically 0 (black).

GRID COLOR = <integer> This option sets the grid color which de-
faults to black taken from the GRID COLR global.

GRID STYLE = <integer> Set the grid style which is normally set
by the GRID STYLE that is set to SOLID.

HEIGHT = <array> This required pair presents the surface data to
be plotted. The column index (number of lines) becomes the X axis
value. The value at each array point becomes the height, and the
row becomes the Z axis value. If the key is not present, an error will
be signalled.

LIGHT U = <number> Sets the X component of the lighting vector
for diffuse shading. The vector must be normalized, i.e. for the 3
components:

√

u2 + v2 + w2 = 1

The default value is taken from the LIGHT U global and for the X
component is 0.

LIGHT V = <number> Sets the Y component of the lighting vector
for diffuse shading. The vector must be normalized as indicated with
LIGHT U. The default value is taken from the LIGHT V global
and is normally -1 indicating a light pointing straight down.

LIGHT W = <number> Sets the Z component of the lighting vector
for diffuse shading. The vector must be normalized as indicated with
LIGHT U. The default value is taken from the LIGHT W global
and is normally 0.

ROTATEY = <number> Sets the rotation around the Y (vertical)
axis in degrees. The default value (-45.0) is found in the global
SURFACE ROTATEY variable. Values should not exceed 0.0 and
should not be less than -90.0 or the ordered hidden surface removal
won’t work.

SHADING = <integer> This option sets the type of surface shading
to use. This integer value is one of the values in Table 3.8 and defaults
to that in the SURFACE SHADING global that is normally set
to FLAT.

106 CHAPTER 3. COMMANDS

Global Value Description

FLAT 0 Flat shading using COLOR value.
ELEVATION 1 Use elevation color shading with SIZE colors

starting at COLOR value.
DIFFUSE 2 Use diffuse shading with SIZE colors starting at

color indexCOLOR and a light source with a nor-
malized vector pointing LIGHT U, LIGHT V,
and LIGHT W.

Table 3.8: Shading values for different surface displays

SIZE = <integer> Sets the number of colors to be used for the EL-
EVATION and DIFFUSE shading models. The default value is
taken from the global SURFACE SHADING SIZE that is nor-
mally 16.

XOFF = <number ! Sets the X axis offset. The default value found in
SURFACE XOFF is 0.0. Increasingly large negative values will
shift the display area to the left. Larger positive values will go to the
right.

YOFF = <number ! Sets the Y axis offset. The default value found in
SURFACE YOFF is -.25. Increasingly large negative values will
shift the display area down. For Larger positive values it will go up.

ZOFF = <number ! Sets the Z axis offset. The default value found in
SURFACE ZOFF is -3.0. Increasingly large negative values will
shift the display area farther away mitigating some effects of the
perspective transformation but will result in smaller images. The
default viewing display area lies in the −2 → −4 Z area.

Variables Set: none

Errors Detected: In addition to bad type errors and out of storage errors, the
following are signaled.

Known Deficiencies: The “hidden surface” removal algorithm is non-existent
and relies on us drawing stuff from back to front. There’s no connection
between the axis size and good display angles.

See Also: BAR3D on page 30, COLORMAP on page 52.

Examples:

The first example demonstrates a flat surface plot of a 400 x 400 cosine
surface. The control file resembles:

// Flat surface plot.

READBIN cosv = "../regression/surface.bin"

3.31. SURFACE 107

IMAGE WIDTH=640,HEIGHT=480

SURFACE HEIGHT=cosv,ROTATEY=-25,XOFF=-0.2,SHADING=FLAT

PS "surface_flat.ps"

Figure 3.28: Flat shading 3D surface plot

The second example plots the same dataset but with elevation colors and no
polygonal boundaries. The results are shown in Figure 3.29.

// Surface plot with elevation shading.

READBIN cosv = "../regression/surface.bin"

IMAGE

SURFACE HEIGHT=cosv,ROTATEY=-25,XOFF=-.2,SHADING=ELEVATION,COLOR=ELEVATION_COLORS,SIZE=96

PS "surface_elev.ps"

108 CHAPTER 3. COMMANDS

Figure 3.29: Elevation color shading surface plot (flat, no boundaries)

The final example shows a larger data set (640 x 480) of floating-point values
displayed with DIFFUSE shading. Notice that we had to create the shades
of red using the COLORMAP command as they are not part of the default
colormap.

// Diffuse shading surface.

READBIN sinv = "../regression/surfaceb.bin"

IMAGE

COLORMAP SHADE=2,COUNT=32,START=30

SURFACE HEIGHT=sinv,ROTATEY=-25,XOFF=-.2,SHADING=DIFFUSE,COLOR=30,SIZE=32

PS "surface_diffuse.ps"

3.31. SURFACE 109

Figure 3.30: Diffuse color shading with light source pointing down

110 CHAPTER 3. COMMANDS

3.32 SYMBOL

Display the current symbol table.

SYMBOLTABLE

Description: Dump the symbol table values to standard output.

Keywords: None (TABLE is ignored if present).

Errors Detected: None

Known Deficiencies: Lists and vectors aren’t dumped very well. Symbols
longer than 30 characters may be truncated or the columns won’t match
very well.

Example: The following shows the content of the symbol table at startup.

1: symbol table

LINE_STYLE: -1

SQUARE: 1

GREEN: 4

FIRSTFREE: 105

AXES_FONT: "F5x7"

AXES_LABEL_FONT: "F8x13"

CIRCLE: 0

ASTERISK: 4

BUCKETSIZE: 1

MAGENTA: 7

HEIGHT: 480

WIDTH: 640

WHITE: 1

RED: 2

BLUE: 6

SCATTER_COLOR: 0

GRAPH_BACKGROUND: 1

ELEVATION: 9

SCATTER_SIZE: 2

AXES_VERTICAL_CHARS_SEPARATION: 2

AXES_HORIZONTAL_CHARS_SEPARATION: 2

YELLOW: 3

NOISY: 1

GREY60: 8

BLACK: 0

CYAN: 5

LINE_COLOR: 0

3.32. SYMBOL 111

PLUS: 3

DECORATION_COLOR: 0

BACKGROUND_COLOR: 1

BAR_COLOR: 2

BAR_SEPARATION: 1

TRIANGLE: 2

VERSION: "graph V1.00.004"

SCATTER_SYMBOL: 0

112 CHAPTER 3. COMMANDS

3.33 TRANSFORM

Select transform for graphing.

TRANSFORMX[NONE | LOG2 | LOG | LOG10
]
TRANSFORMY[NONE | LOG2 | LOG | LOG10
]
TRANSFORMZ [NONE | LOG2 | LOG | LOG10
]
TRANSFORMW[NONE | LOG2 | LOG | LOG10
]

Description: Set the default transform to use on the axis named (these are 4
different commands). The NONE transform is straight Cartesian coor-
dinates, the LOG2 does log2 of its axis , LOG is the natural logarithm,
and LOG10 is the log10 transform. The default on all axes is NONE.

For 3D displays, Z is in and out of the page, positive Y up, and positive X
to the right. The W transform will be used for additional values associated
with arrays.

Keywords: None.

Errors Detected: At line nn, missing transform symbol The transform
keyword (one of 4 above) must be followed by a symbol.

At line nn, symbol ’sss’ is not a known transform The transform name
you gave isn’t known to the system.

Known Deficiencies: The axes drawing for the transforms isn’t very good
yet. Not all plot routines that could use the transforms actually do so.

Example: The following example reads a file with y = x2 in it. The first plot
does not transform the values and the second uses a log scale for the X
axis and a log2 scale for the Y axis (doesn’t work under Windows so don’t
try it).

// Testing log graphs.

readcsv "lg2.csv"

image a width=320, height=240

line color=red, X=n, Y=n2, XLABEL="Y=X^2"

image b width=320, height=240

transformy log2

transformx log

line color=red,X=n,Y=n2, XLABEL="Y=X^2",YLABEL="log2(Y)"

3.33. TRANSFORM 113

image width=640,height=240

place a,x=0,y=0

place b,x=320,y=0

ps "../manual/transform.ps"

Figure 3.31: Using the LOG transforms for line graphs.

114 CHAPTER 3. COMMANDS

Chapter 4

Graphics

Some graphics implementation details need explanation. We examine the de-
fault color map and line styles.

4.1 Color Maps

The system generates up to 256 color bit maps. A default color map is created
at startup along with global names for some of the values. The default is shown
in Figure 4.1. Names and color indices are given next to each color.

Figure 4.1: Default color map

115

116 CHAPTER 4. GRAPHICS

You are free to redefine any of these colors as you see fit. You can define an
additional 130 colors starting at FIRST FREE.

4.2 Line Styles

Some of the graphics commands associated with axes and background grids
allow you to specify how to draw lines associated with their activities. A sytle
value is a 32 bit integer that is used to draw 32 bits of a straight line. A 1 bit in
the integer causes a dot to be draw, a 0 not. Figure 4.2 shows some common
line style values and the values associated with them.

The global variables SOLID, FINEDOT, COARSEDOT, FINEDASH,
COARSEDASH,FINEDOTDASH, andCOARSEDOTDASH have these
values preassigned. You are of course free to invent your own values - the last
line is a random number with red tic marks indicating every 32nd bit where the
pattern repeats.

The following code was used to generate Figure 4.2.

image width=640,height=420

TEXT_FONT = F8x13Bold

DRAW TEXT X=0,Y=400,MSG="0xFFFFFFFF"

DRAW LINE 100,400,500,400, STYLE = SOLID

DRAW TEXT X=510,Y=400, MSG="SOLID"

DRAW TEXT X=0,Y=375, MSG="0xAAAAAAAA"

DRAW LINE 100,375,500,375, STYLE = FINEDOT

DRAW TEXT X=510,Y=375, MSG="FINEDOT"

DRAW TEXT X=0,Y=350, MSG="0xCCCCCCCC"

DRAW LINE 100,350,500,350, STYLE = FINEDASH

DRAW TEXT X=510,Y=350, MSG="FINEDASH"

DRAW TEXT X=0,Y=325, MSG="0xEEEEEEEE"

DRAW LINE 100,325,600,325, STYLE=0xEEEEEEEE

DRAW TEXT X=0,Y=300, MSG="0x11111111"

DRAW LINE 100,300,500,300, STYLE = COARSEDOT

DRAW TEXT X=510,Y=300, MSG="COARSEDOT"

DRAW TEXT X=0,Y=275, MSG="0xFFF0FFF0"

DRAW LINE 100,275,500,275, STYLE = COARSEDASH

DRAW TEXT X=510,Y=275, MSG="COARSEDASH"

DRAW TEXT X=0,Y=250, MSG="0xFFFFFFF0"

DRAW LINE 100,250,600,250, STYLE=0xFFFFFFF0

4.2. LINE STYLES 117

DRAW TEXT X=0,Y=225, MSG="0xFFFF0000"

DRAW LINE 100,225,600,225, STYLE=0xFFFF0000

DRAW TEXT X=0,Y=200, MSG="0xF6F6F6F6"

DRAW LINE 100,200,500,200, STYLE = FINEDOTDASH

DRAW TEXT X=510,Y=200, MSG="FINEDOTDASH"

DRAW TEXT X=0,Y=175, MSG="0xFF18FF18"

DRAW LINE 100,175,500,175, STYLE = COARSEDOTDASH

DRAW TEXT X=510,Y=175, MSG="COARSEDOTDASH"

DRAW TEXT X=0,Y=150, MSG="0xFFFF03C0"

DRAW LINE 100,150,600,150, STYLE=0xFFFF03C0

DRAW TEXT X=0,Y=125, MSG="0xFE66FE66"

DRAW LINE 100,125,600,125, STYLE=0xFE66FE66

DRAW TEXT X=0,Y=100, MSG="0xFF0F0F00"

DRAW LINE 100,100,600,100, STYLE=0xFF0F0F00

DRAW LINE 100,45,100,55, COLOR=2

DRAW LINE 132,45,132,55, COLOR=2

DRAW LINE 164,45,164,55, COLOR=2

DRAW LINE 196,45,196,55, COLOR=2

DRAW LINE 228,45,228,55, COLOR=2

DRAW LINE 260,45,260,55, COLOR=2

DRAW LINE 292,45,292,55, COLOR=2

DRAW LINE 324,45,324,55, COLOR=2

DRAW LINE 356,45,356,55, COLOR=2

DRAW LINE 388,45,388,55, COLOR=2

DRAW LINE 420,45,420,55, COLOR=2

DRAW LINE 452,45,452,55, COLOR=2

DRAW LINE 484,45,484,55, COLOR=2

DRAW LINE 516,45,516,55, COLOR=2

DRAW LINE 548,45,548,55, COLOR=2

DRAW LINE 580,45,580,55, COLOR=2

DRAW TEXT X=0,Y=50, MSG="0xFEA73EDD"

DRAW LINE 100,50,600,50, STYLE=0xFEA73EDD

ps "linestyle.ps"

118 CHAPTER 4. GRAPHICS

Figure 4.2: Different linestyles and their STYLE values

Index

LATEXutilization, 14

ABS function, 18
addition, 16
ALTERNATE keyword, 54
ANGLE keyword, 68, 81
ARGV0 global, 21
ARGV1 global, 21
ARGVn globals, 12, 21
ARROW COLOR global, 62
ARROW LENGTH

global, 62
ARROW STYLE global, 62
ARROW WIDTH

global, 62
ASCENDING sort keyword, 102
ASTERISK global, 94
AVERAGEDEVIATION function, 18
Axes options, 23
AXES FILL keyword, 23, 30, 104
AXES FONT

global, 23
keyword, 23

AXES HORIZONTAL CHARS SEPARATION
global, 24

AXES LABEL FONT
global, 23
keyword, 23

AXES VERTICAL CHARS SEPARATION
global, 24

B global variable, 36, 93
BACKGROUND keyword, 24
BACKGROUND COLOR

global, 72
keyword, 73

BAR

command, 26
example, 27, 28

BAR3D command, 30
BAR3D AXES FILL global, 23, 30
BAR3D COLOR global, 30
BAR3D PERCENT WIDTH global, 30
BAR3D ROTATEY global, 31
BAR3D XOFF global, 31
BAR3D YOFF global, 31
BAR3D ZOFF global, 31
BAR COLOR

example, 27, 28
global, 26
keyword, 26

BAR SEPARATION
global, 26
keyword, 26

BASIS keyword, 54
BEZIER COLOR global, 64
BEZIER COUNT global, 64
BEZIER STYLE global, 64
BLACK color, 50
BLUE

color, 50
keyword, 51

BLUES
colors, 30, 50
global, 23

BMP
command, 41
example, 27

BOUNDARY keyword, 104
BOUNDARY COLOR keyword, 104
BOX

example, 38
BOX command, 35
BOX COLOR global, 35

119

120 INDEX

BOX RANGE global, 35
BOX SIZE global variable, 36
BOX WHISKER STYLE global, 37
BUCKET SIZE

global, 42
keyword, 42

BUCKETS
Example, 27

BUCKETS command, 42
bytearray, 16

CIRCLE global, 94
CIRCLES command, 45
COARSEDASH global, 116
COARSEDOT global, 116
COARSEDOTDASH global, 116
COLOR

command, 50
keyword, 30, 35, 45, 62, 64, 66, 68,

72, 76, 93
color maps, 115
COLOR1 keyword, 54
COLOR2 keyword, 55
COLORMAP command, 52
COLORMAP COUNT global, 52
COLORS keyword, 45, 55, 81
CONTOUR command, 53
CONTOUR ALTERNATE global, 54
CONTOUR BASIS global, 54
CONTOUR COLOR1 global, 54
CONTOUR COLOR2 global, 55
CONTOUR COLORS global, 55
CONTOUR DIRECTION global, 55
CONTOUR XBASE global, 56
CONTOUR XINC global, 56
CONTOUR YBASE global, 56
CONTOUR YINC global, 56
COUNT keyword, 45, 52, 64
CYAN color, 50
CYANS

colors, 30, 50
global, 23

DATA keyword, 42
DECORATION COLOR

global, 104

keyword, 104
DECORATION COLOR keyword, 73
DECORATION STYLE keyword, 73
DESCENDING sort keyword, 102
DIAMOND global, 94
DIFFUSE global, 106
DIRECTION keyword, 55
DISPLAY

example, 28
DISPLAY command, 61
DISPLAY WITH global, 61
division, 17
DRAW ARROW command, 62
DRAW BEZIER command, 64
DRAW LINE command, 66
DRAW TEXT

example, 97
use, 18

DRAW TEXT command, 68

E global, 55
ELEVATION colors, 50
ELEVATION global, 106
ELEVATION COLOR keyword, 55
EOF

READCSV terminator, 90
READONED terminator, 92

EQUALCOLOR
keyword, 45

F12x24 font, 68
F5x7 font, 68
F6x10 font, 68
F8x13 font, 68
F8x13bold font, 68
F9x15 font, 68
FILE keyword, 61
FILLEDCIRCLE global, 94
FINEDASH global, 116
FINEDOT global, 116
FINEDOTDASH global, 116
FIRSTFREE color, 50
FLAT global, 106
float, 15
floatarray, 16
floatvector, 16

INDEX 121

FONT keyword, 68, 73
fonts, 68

GIF
example, 28

GIF command, 71
GRAPH BACKGROUND global, 24
GREEN

color, 50
keyword, 51

GREENS
colors, 30, 50
global, 23

GREY60 color, 50
GREYS

colors, 30, 50
global, 23

grid, 24
GRID COLOR

global, 24, 105
keyword, 24, 105

GRID STYLE
global, 25, 105
keyword, 25, 105

HEIGHT
global, 72
keyword, 72, 105

HIGH keyword, 43

IMAGE
example, 27, 28, 38

IMAGE command, 72
INDEXED

example, 97
function, 18

intarray, 16
integer, 15
intvector, 16
IQR global, 36

LABEL
keyword, 30, 76, 93

LASTX global, 63, 64, 66, 69
LASTY global, 63, 64, 66, 69
LEGEND command, 73

LEGEND BACKGROUND COLOR global,
73

LEGEND DECORATION COLOR global,
73

LEGEND DECORATION STYLE global,
73

LEGEND FONT global, 73
LENGTH keyword, 62
LIGHT U keyword,global, 105
LIGHT V keyword,global, 105
LIGHT W keyword,global, 105
LINE command, 76
LINE keyword, 76
line styles, 116
LINE COLOR global, 66, 76
LINE STYLE global, 66, 76
list, 15
LLSQ

keyword, 36, 93
LLSQ command, 79
LOG

function, 19
transform, 112

LOG10
function, 19
transform, 112

LOG2
function, 19
transform, 112

LOW keyword, 43

M global variable, 36, 93
MAGENTA color, 50
MAGENTAS

colors, 30, 50
global, 23

MARK COLOR keyword, 77
MARKS keyword, 77
MAX function, 20
MAXX, 37, 46, 56, 77, 95
MAXX global, 26
MEAN function, 19
MEDIAN function, 20
MESSAGE keyword, 68, 73
MIN function, 20
MINMAX global, 36

122 INDEX

MINX, 37, 46, 56, 77, 95
MINX global, 26
multiplication, 17

N global, 55
NAMES keyword, 81
NE global, 55
NOHORIZONTAL GRID option, 25
NOISY global, 21
NONE transform, 112
NOVERTICAL GRID option, 25
NW global, 55

OUTLINE keyword, 81
OUTTAKE keyword, 82

PERCENT keyword, 30
PERCENTILE global, 36
PIE command, 81
PIE ANGLE global, 81
PIE COLORS global, 81
PIE OUTTAKE PIXELS global, 82
PIE START ANGLE global, 82
PIXELS keyword, 82
PLACE

example, 38, 97
PLACE command, 85
PLUS global, 94
POLYNOMIAL COEFFICIENTS

example, 97
global variable, 36, 94

POLYNOMIAL COLOR
example, 97
global, 36, 93
keyword, 36, 93

POLYNOMIAL DEGREE
example, 97
global variable, 36
keyword, 36, 94

PREVX global, 64
PREVY global, 64
PS command, 87

RADIUS keyword, 82
RANGE keyword, 35
READBIN

example, 38
READBIN command, 88
READCSV

example, 27, 28
READCSV command, 90
READONED command, 92
RED

color, 50, 52
keyword, 51

REDS
colors, 30, 50
global, 23

ROTATEY keyword, 31, 105
ROUND

function, 20
keyword, 43

S global, 55
SCALEX, 37, 46, 56, 77, 95
SCALEX global, 26
SCALEY, 37, 46, 56, 77, 95
SCALEY global, 26
SCATTER command, 93
SCATTER COLOR global, 93
SCATTER SIZE global, 94
SCATTER SYMBOL global, 94
SE global, 55
SHADE keyword, 52, 55
SHADING keyword, 105
SHOW command, 100
SIZE

function, 20
keyword, 36, 94

SIZE keyword, 77, 106
SIZES

keyword, 45
SIZES keyword, 94
SOLID global, 105, 116
SORT command, 102
SQUARE global, 94
STANDARD DEVIATION global, 36
STANDARDDEVIATION function, 20
START keyword, 52
START ANGLE keyword, 82
string, 15
STYLE keyword, 62, 64, 66, 76

INDEX 123

styles, 116
subtraction, 17
SUM

function, 20
SURFACE command, 104
SURFACE AXES FILL global, 23, 104
SURFACE BOUNDARY COLOR global,

104
SURFACE ROTATEY global, 105
SURFACE SHADING global, 105
SURFACE SHADING SIZE global, 106
SURFACE XOFF global, 106
SURFACE YOFF global, 106
SURFACE ZOFF global, 106
SW global, 55
SYMBOL

command, 110
keyword, 94

TEXT ANGLE global, 68
TEXT COLOR global, 68
TEXT FONT global, 68
TRANSFORMW command, 112
TRANSFORMX command, 112
TRANSFORMY command, 112
TRANSFORMZ command, 112
TRIANGLE global, 94
TRUNCATE keyword, 43

VALUES keyword, 82
VARIANCE function, 21
VERSION global, 21

W global, 55
WHISKER STYLE keyword, 37
WHITE color, 50
WIDTH

global, 72
keyword, 62, 72

WITH keyword, 61

X keyword, 31, 37, 69, 74, 76, 85, 94
XBASE keyword, 56
XHIGH keyword, 24
XINC keyword, 56
XINDEX

keyword, 46
XLABEL

example, 28
XLABEL keyword, 24
XLL, 37, 46, 57, 77, 95
XLL global, 26, 31
XLOW keyword, 24
XNAMES keyword, 46
XOFF keyword, 31, 106
XUR, 37, 47, 57, 77, 95
XUR global, 27, 31
XVALUES keyword, 46

Y keyword, 31, 37, 69, 74, 76, 85, 94
YBASE keyword, 56
YELLOW color, 50
YELLOWS

colors, 30, 50
global, 23

YHIGH keyword, 24
YINC keyword, 56
YINDEX keyword, 46
YLABEL

example, 28
YLABEL keyword, 24
YLL, 37, 47, 57, 77, 95
YLL global, 27, 31
YLOW keyword, 24
YNAMES keyword, 46
YOFF keyword, 31, 106
YUR, 37, 47, 57, 77, 95
YUR global, 27, 31
YVALUES keyword, 46

ZHIGH keyword, 56
ZLOW keyword, 56
ZOFF keyword, 31, 106

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Goals
	1.2 Operation
	1.3 Plots
	1.3.1 Bar Graphs
	1.3.2 Box Graphs
	1.3.3 Line Graphs
	1.3.4 Circles
	1.3.5 Maps
	1.3.6 Pie Charts
	1.3.7 Scatter Plots
	1.3.8 Surfaces
	1.3.9 General Graphics

	1.4 Tasks
	1.4.1 Sorting
	1.4.2 Polynomial Curve Fitting
	1.4.3 Data Formats
	1.4.4 Output Formats

	2 Parameters and Expressions
	2.1 Primitives
	2.2 Syntax
	2.3 Arithmetic
	2.3.1 Addition
	2.3.2 Other Operations

	2.4 Functions
	2.4.1 ABS
	2.4.2 AVERAGEDEVIATION
	2.4.3 INDEXED
	2.4.4 LOG
	2.4.5 LOG10
	2.4.6 LOG2
	2.4.7 MEAN
	2.4.8 MEDIAN
	2.4.9 MAX
	2.4.10 MIN
	2.4.11 ROUND
	2.4.12 SIZE
	2.4.13 SUM
	2.4.14 STANDARDDEVIATION
	2.4.15 VARIANCE

	2.5 Variables

	3 Commands
	3.1 Axes
	3.2 Background Grid
	3.3 BAR
	3.4 BAR3D
	3.5 BOX
	3.6 BMP
	3.7 BUCKETS
	3.8 CIRCLES
	3.9 COLOR
	3.10 COLORMAP
	3.11 CONTOUR
	3.12 DISPLAY
	3.13 DRAW ARROW
	3.14 DRAW BEZIER
	3.15 DRAW LINE
	3.16 DRAW TEXT
	3.17 GIF
	3.18 IMAGE
	3.19 LEGEND
	3.20 LINE
	3.21 LLSQ
	3.22 PIE
	3.23 PLACE
	3.24 PS
	3.25 READBIN
	3.26 READCSV
	3.27 READONED
	3.28 SCATTER
	3.29 SHOW
	3.30 SORT
	3.31 SURFACE
	3.32 SYMBOL
	3.33 TRANSFORM

	4 Graphics
	4.1 Color Maps
	4.2 Line Styles

	List of References
	Index

