
1

Inductor Software Manual

Jed Marti

KI7NNP

February 14, 2024

2

Contents

1 Introduction 9

2 coil: Generate CSG coil form 11

2.1 Source Code . 14

3 inductor: Best Approximation 17

3.1 Command Line Parameters 17
3.2 A Sample Run . 19
3.3 The Source Code . 21

4 compare: Analysis 23

4.1 Source Code . 24

5 indequm: Genetic Optimization 25

5.1 Genetic Algorithm . 25
5.2 The Control File . 26

5.2.1 Fixed Variables . 26
5.2.2 Coefficients . 28
5.2.3 Best Estimate . 29

5.3 Execution . 29
5.4 Compilation . 32
5.5 Adding a New Equation . 32
5.6 Source Code . 33

3

4 CONTENTS

List of Figures

2.1 20 turns, #22 wire, .5" diameter, 0.04" spacing 11
2.2 20 turns, #22 wire, .5" diameter, 0.04" spacing 14

5

6 LIST OF FIGURES

List of Tables

2.1 coil program required parameters. 12
2.2 coil program optional parameters. 13
2.3 coil.tar archive contents. 15

3.1 Inductor parameter forms. 18
3.2 inductor program equation names. 19
3.3 Contents of allind.tar . 21

4.1 Database CSV file columns. 23
4.2 Database restrictions. 24

5.1 Polynomial Variables . 25
5.2 Fixed control values. 27
5.3 indequ source code . 33

7

8

Chapter 1

Introduction

A manual for 4 programs used to generate 3D printable inductors.

coil Generate an OpenSCAD description of a 3D printable plastic coil form.

inductor Select a prediction equation, size limits and optimize turns and
size for a requested inductance.

indequ A genetic algorithm program to optimize multivariate polynomials
to fit measured inductances.

compare Compare equations against measured values.

The indequ program runs only under Linux and will work satisfactorily
on a Raspberry PI 4, somewhat slowly, but exploits the maximum number
of processor cores you specify. The other programs are command line driven
and run under Windows and Linux.

The source code and executables can be downloaded and you’re free to
do whatever you want with them.

9

10

Chapter 2

coil: Generate CSG coil form

Once you’ve determined the size and number of turns for a coil, the coil

program will generate an OpenSCAD file describing a cylinder with holes for
the leads and channels appropriate to the size wire specified. For example,
Figure 2.1 shows the OpenSCAD view of a coil with 20 turns ready to convert
to STL and send to a printer.

Figure 2.1: 20 turns, #22 wire, .5" diameter, 0.04" spacing

11

12

The program is completely command line driven.

coil outfile.scad [options]

Here outfile.scad is where the program puts the OpenSCAD description
and must be present. .scad is the preferred suffix for files of this type but
you can use anything. The options are of the form:

-name value

Table 2.1 gives the required options. The program will not run unless all
three parameters are present. All parameters are case insensitive - file names
are case sensitive unless running under Windows.

Parameter Description

-length float The coil length in inches.
-radius float The coil radius in inches.
-turns integer The number of turns.

Table 2.1: coil program required parameters.

Other parameters are optional. The program will supply default values
if they are not present. Figure 2.1 was created by:

coil 20t.scad -length 0.8 -radius 0.25 -turns 20

13

Parameter Def. Description

-cylindersperturn int 18 The number of cylinders used for
each coil turn. For diameters greater
then 0.5", this value should be in-
creased.

-end float 0.1 The amount of plastic overhang after
the last turn. Must be greater than
zero or the last turn hole will not hold
the wire.

-formfaces int 90 The number of rectangles used to
generate the cylinder. Can be de-
creased for smaller radii and in-
creased for larger.

-gauge int 22 The wire gauge to be used. Values
from 14 to 32 are known.

-layer float 0.011811 The printer layer thickness in inches.
-wallthickness float 0.125 The plastic cylinder wall thickness

in inches. This should be increased
for coils with diameters greater than
0.75 or for coils with heavier gauge
wire.

-wireindentfaces int 9 The number of rectangles used for
each cylinder in the wire channel.
Should be increased for large gauge
wire.

-wiresize float 0.028 The wire diameter in inches (over-
rides -gauge).

Table 2.2: coil program optional parameters.

Increasing the number of cylinders per turn makes for nicer coils but
greatly increases the CPU time necessary for OpenSCAD to generate the
STL files. The following generates the much nicer coil form in Figure 2.2.
The resulting scad file is over 1400 lines long. and takes about and hour and
45 minutes on a fast machine.

coil t20x.scad -length 0.8 -radius 0.25 -turns 20 \

14

-cylindersperturn 72 -wireindentfaces 18

theta = 1.45871

wire length = 31.4261

Cylinder length 0.0261884 inches

Cylinder offset Z 0.000555556 inches

Figure 2.2: 20 turns, #22 wire, .5" diameter, 0.04" spacing

2.1 Source Code

This includes 3 source files and two executables in the coil.tar archive.

15

File Description

00README Description and instructions.
coil Linux executable.

coil.c Program source code.
coil.exe Windows executable.

Makefile Instructions for make program in Linux and Windows.
wire.h What we know about enamel magnet wire.

Table 2.3: coil.tar archive contents.

16

Chapter 3

inductor: Best Approximation

This module conducts an exhaustive search for the best radius, length, and
number of turns to achieve a requested inductance. It will also give an
analysis of all the known equations and whether or not they apply to the
value.

3.1 Command Line Parameters

For operation, the only required parameter is the inductance in micro Henries
which can appear anywhere. A number without a prefix is assumed to be
the request. For example:

inductor 5.6

requests the ARRL original equation for 5.6 µH .
All parameters are optional and each parameter name is prefixed with a

-. The parameter names are not case sensitive.

17

18

Parameter Default Description

identifier ARRL
Original

The equation to use, see Table 3.2.

-gauge int 22 The wire gauge for winding the coil.
-maxlength float [mm
| inches]

3 The coil’s maximum length in inches
(default) or millimeters if so speci-
fied.

-maxradius float [mm
| inches]

1 The coil’s maximum radius in inches
(default) or millimeters if so speci-
fied.

-maxturns int 50 The maximum number of turns al-
lowed.

-minlength float [mm
| inches]

0.05 The coil’s minimum lengh in inches
(default) or millimeters if so speci-
fied.

-minradius float [mm
| inches]

0.0625 The coil’s minimum radius in inches
(default) or millimeters if so speci-
fied.

-minturns int 1 The minimum number of turns to
check.

-reslength int 100 The number of tests to make between
the minimum length and the maxi-
mum length.

-resradius int 100 The number of tests to make between
the minimum radius and the maxi-
mum radius.

Table 3.1: Inductor parameter forms.

Table 3.2 shows the known equations. Equation names are not case sen-
sitive.

19

Name Usage

ARRLOriginal The original ARRL equation and constants. The default.
ARRLTurns The ARRL equation tuned to the turntest.csv file.

Only useful for .04 spacing #22 wire.
ARRLnls The ARRL equation tuned to the nls.csv file. Only

useful for 0.028" spacing #22 wire.
ARRLall22 The ARRL equation tuned to the all22.csv file. Only

useful for #22 gauge wire.
ARRLalljan24 The ARRL equation tuned to the alljan24.csv file. Not

very good predictor.
Simple Function of length and radius. Only good for 0.028" spac-

ing, #22 gauge wire. Tuned against nls.csv
Equation8 Not tuned - not good for anything.
EquationA Includes wire gauge. Best for #22 gauge wire though.
EquationD Best all around for all sizes and wire gauges. Tuned

against alljan24.csv.
EquationF No wire gauge but reasonable all around.
EquationI Good all around and improving.

RFC Poor all around.
RF1 Poor all around.

Lundin Poor all around.
Miller Poor all around.

Table 3.2: inductor program equation names.

3.2 A Sample Run

I’m looking for a form for a 5.4µH inductor so I start with the defaults.

inductor 5.4

inductor V1.00.004

For equation ARRLOriginal:

Best result 5.4 uH, 23 turns, length = 2.8525", radius = 0.5875"

Recommendations:

ARRLOriginal: marginal

ARRLTurns: marginal

ARRLnls: marginal

20

ARRLall22: reasonable

ARRLjan24: marginal

Simple: marginal

Equation8: notRecommended

EquationA: highlyRecommended

EquationD: marginal

EquationF: recommended

EquationG: notRecommended

EquationH: notRecommended

EquationI: notRecommended

RFC: marginal

RF1: marginal

Lundin: marginal

Execute this:

coil inductor.scad -radius 0.5875 -length 2.8525 -turns 23

If you copy the final line and execute it, the OpenSCAD file will be
generated.
The program recommends EquationA or EquationF so I rerun using Equa-
tionA. Notice that the recommended form is much smaller.

inductor 5.4 equationa

inductor V1.00.004

For equation EquationA:

Best result 5.39996 uH, 47 turns, length = 1.3185", radius = 0.19375"

Recommendations:

ARRLOriginal: marginal

ARRLTurns: marginal

ARRLnls: marginal

ARRLall22: marginal

ARRLjan24: marginal

Simple: marginal

Equation8: notRecommended

EquationA: highlyRecommended

EquationD: marginal

EquationF: marginal

EquationG: notRecommended

21

EquationH: notRecommended

EquationI: notRecommended

RFC: marginal

RF1: marginal

Execute this:

coil inductor.scad -radius 0.19375 -length 1.3185 -turns 47

3.3 The Source Code

The compare and inductor programs are included in the allind.tar archive.

File Description

00README Description and instructions.
bestind.c Exhaustive search for best solution.
cmdline.c Command line parsing for indcutor.
compare Linux executable.

compare.c Main program for compare.
compare.exe 32 bit Windows executable.

compare.h Prototypes, data structures for compare.
equations.c Current known equations for both programs.
equations.h Prototypes for equations.c.

inductor Linux executable for inductor.
inductor.c Main program for inductor.

inductor.exe 32 bit Windows executable of inductor.
inductor.h Prototypes, structures for inductor.

Makefile Linux and Microsoft Makefile.
readind.c Read inductor csv files for compare.

wire.c What we know about wire gauges.
all22.csv Measure data for all #22 gauge coils.

alljan24.csv All measure data for coils > 0.5µH .
nls.csv Fixed spacing #22 gauge coils.

turntest.csv Fixed spacing/diameter #22 gauge coils.

Table 3.3: Contents of allind.tar

22

Chapter 4

compare: Analysis

The compare program runs all equations against a database and shows the
test limits and RMS error. It runs on both Linux and Windows.

The test files are in Comma Separated Variable format - numbers and so
on separated with commas. Table 4.1 gives the fields and their values.

Name Description

Henrys The measured inductance in Henrys.
Radius The coil radius in meters.
wire The wire diameter in inches.

gauge The wire gauge number.
Turns The number of coil turns.
Length The coil length in meters.

FileName The original file name from which the data was derived.

Table 4.1: Database CSV file columns.

Four summary data files are included in allind.tar, see Table 3.3 on
page ?? for the distribution file. The subsets and their restrictions are sum-
marized by compare in Table 4.2.

23

24

Subset Turns Gauge Diameter Length µH

turntest.csv 8 - 50 22 .5" .32"-2" .612 - 7.06
nls.csv 5 - 40 22 .258" - .866" .14" - 1.12" .516 - 19.8

all22.csv 5 - 40 22 .261" - 2" .14" - 3" .502 - 40.73
alljan24.csv 5 - 50 14 - 28 .261" - 2" .14" - 3" .502 - 40.73

Table 4.2: Database restrictions.

4.1 Source Code

The source code and CSV data files are part of the allind.tar archive. See
Section 3.3 on page 21.

Chapter 5

indequm: Genetic Optimization

The indequm program attempts to optimize a multivariate equation with
the variables:

Variable Description

N The number of turns.
R The coil radius in meters.
L The coil length in meters.
W The wire radius in meters.

Table 5.1: Polynomial Variables

Most equations include the use of µ0 in the belief that cores with different
permeability might allow the use of µr. This is covered somewhat in the
experimental report [2].

5.1 Genetic Algorithm

Genetic algorithm optimization is an important AI technique for problems
with many solutions [1].

Our problem is to optimize the coefficients of multivariate polynomials to
fit a set of data much like linear list squares or polynomial regression. Each
multivariate polynomial is a sum of coefficients and the variables of Table 5.1.
A part of a cubic solution might be:

25

26

R =
3

∑

i=0

riR
i (5.1)

For example, the following with cubic components is a reasonable equa-
tion that includes wire radius.

L = µ0
(r0 + r1R + r2R

2 + r3R
3)(t0 + t1N + t2N

2)(w0 + w1W + w2W
2)

l0 + l1L+ l2L2 + l3L3

(5.2)
The program assigns values to ri, evaluates the equation for the variables

of Table 5.1 against all measured coils computing a “goodness”. If the com-
puted inductance for coil j is Lj and the measured value is Mj then the
goodness value for a set of m+ 1 coils is:

goodnessj =

√

√

√

√

∑m
j=0

(Lj−Mj)2

Mj

m+ 1
(5.3)

The process is repeated with the best values being the solution.

5.2 The Control File

To start the process, a file specifies the ranges and resolution of all coefficients
and some control variables to help the process along. The control file can
have blank lines, comments begin with # or \\ in the first columns.

5.2.1 Fixed Variables

Table 5.2 has control values common to all equations.

27

Variable Type Def. Description

cvarname string NULL Variable name for C file table.
direction double 0.01 Change direction this percent

(breeding parameter).
javarname string NULL Variable name for object file.
maxgen-
erations

int32_t 100000 The number of generations to run
before quitting.

minormax int32_t 8388608 How many minor evaluations to do
before giving up.

noise int32_t 1 How much debug to display.
pctchange double 0.01 If range expanding enabled, do this

percent.
population int32_t 64 Number of tests in a generation.
processes int32_t 1 Number of processes for concurrent

processing.
quitat int32_t -1 If -1, quit on maxgenerations oth-

erwise quit after this number of gen-
erations without an improvement.

raiselower int32_t 10 Check for range problem this num-
ber of generations.

random-
minor

double 0.33 Percentage of parameters to adjust
randomly.

range-
expand

int32_t 0 If non-zero check for range expan-
sion.

resultc string NULL Where to put C file with result val-
ues.

resultfile string NULL Where to put final results in text
form.

resultja string NULL Where to put object descriptions.
save int32_t 4 Number of best results to save and

breed.
seed int64_t 1033888277 Random number seed for Twister.
tries int32_t 20 How many attempts to breed before

giving up.

Table 5.2: Fixed control values.

28

5.2.2 Coefficients

The equation to fit is specified at compile time and a series of macros expands
the symbol table for each coefficient. For example r2 is the coefficient r2.
The available symbols are specific to equation.

Each coefficient must have a specification in the control file.

coefficient-name, low, high, major-increment, minor-increment,
minor-count

When deciding what coefficient values to test, the system randomly selects
values between low and high but spaced major-increment apart. The double-
precision values are used to generate a hash code into a quadratic search
table. If this set of coefficients has already been evaluated, then the system
tries for another set. It will attempt this tries times (default 20) before
giving up.

Once the system determines a set of coefficients, it evaluates up to mi-

normax variations around the selected values. Here the minor-increment
and minor-count is used to go plus and minus minor−count

2
on either side of

the major value. The best result is returned. Note that this can sometimes
result in the solution exceeding the specified range by a small amount.

This approach is desirable to spread the computation load amongst sev-
eral processor cores while minimizing the amount of interprocessor commu-
nication that must be used. Generally it is best to tune the minor values to
give a compute time of 1 to 5 seconds. While the system is running typing
a Enter will display the current solution state and the time per process in
microseconds. The number of coefficient values tested is a product of all the
minor-count’s. Too many and you’re wasting compute time, too few and you
spend all your time in interprocess communication.

coefficient-name one or two letters and the index.

low The lowest value the coefficient is allowed to have. Double-precision
floating-point.

high The highest value the coefficient is allowed to have. Double-precision
floating-point.

major-increment Initial testing increment between low and high. Double-
precision floating-point.

29

minor-increment The increment around the major value.

minor-count The number of minor values to test.

5.2.3 Best Estimate

You can start the program with your best estimate of the solution. This can
be a guess or the result of a previous run where the coefficients were near
the boundaries you set. To do so, you specify each coefficient name prefixed
with best. Thus for two radius coefficient ranges:

...

r0, -10, 10, 0.01, 0.002, 5

r1, -100, 100, 0.1, 0.02, 5

...

you might enter:

bestr0 -0.13595004421482

bestr1 64.53039162318042

The system will use these values at startup instead of completely random
values.

5.3 Execution

indequ is command line driven.

indequ inductors.csv control file.indequ

inductors.csv is the file of measured inductances that you wish to fit. For
example, all22.csv shown previously. Or you can make your own measure-
ments.

The second argument is the control file, typically with the .indequ suffix.
When compiled for Equation D, we see the following:

marti@ulam: /ki7nnp/indequm$ indequ

indequ V20.03.004 EQUATION D
Usage: indequ <testinductors> [<ranges>] [outf]

Coefficients: r0 r1 r2 r3 t0 t1 t2 w0 w1 w2 l0 l1 l2 l3

30

We see the equation the system was compiled for and the coefficients that
are to be explored.

During a run, every new improved test, previous best goodness values.
Every generation is also shown. For example

...

gen = 3615 done already 354376, rejected 1768

354367, 0.0397822, 0.0397822, 0.0397822, 0.0397822

gen = 3616 done already 354474, rejected 1769

354458, 0.0397822, 0.0397822, 0.0397822, 0.0397822

354499, 0.0397822, 0.0397822, 0.0397822, 0.0397822

gen = 3617 done already 354572, rejected 1770

354559, 0.0397822, 0.0397822, 0.0397822, 0.0397822

354606, 0.0397822, 0.0397822, 0.0397822, 0.0397822

gen = 3618 done already 354670, rejected 1771

gen = 3619 done already 354768, rejected 1771

gen = 3620 done already 354866, rejected 1774

...

We see that the current best goodness is 0.397822 and that we’re currently
working generation 3621. If you hit enter, you would see something like:

...

EQUATION I: time/process: 2.85141e+06 us

// Goodness = 0.0397899

r0 = -0.13527124632082

r1 = 64.30593666573590

r2 = 7088.43599922746398

r3 = -11000.00000000000000

w0 = -2216.00305291556879

w1 = -5228.82295293508560

w2 = -31088.07463817565076

w3 = -499740.00000001396984

t0 = -2183.19041861923824

t1 = 579.79185831925872

t2 = 1464.66711457692463

t3 = -4.99710017432386

l0 = -23.92692960071267

31

l1 = -2693.45269235206251

l2 = 11213.24250139096876

l3 = 41129.11641499128746

range table

r0: -10 10 0.01 0.002 5 (2001)

r1: -100 100 0.1 0.02 5 (2001)

r2: 0 10000 1 0.2 5 (10001)

r3: -11000 -5000 1 0.2 5 (6001)

w0: -3000 -2000 0.1 0.02 5 (10001)

w1: -7000 -5000 1 0.2 5 (2001)

w2: -50000 -5000 1 0.2 5 (45001)

w3: -500000 -45000 1 0.2 5 (455001)

t0: -2500 -1000 0.1 0.02 5 (15001)

t1: 0 1000 0.1 0.02 5 (10001)

t2: 1000 2000 0.1 0.02 5 (10001)

t3: -10 10 0.1 0.02 5 (201)

l0: -100 0 0.1 0.02 5 (1001)

l1: -3000 -2000 0.1 0.02 5 (10001)

l2: 11000 12000 0.1 0.02 5 (10001)

l3: 22000 50000 0.1 0.02 5 (280001)

gen = 1253 done already 122900, rejected 577

122895, 0.0397899, 0.0397899, 0.0397899, 0.0397899

122901, 0.0397899, 0.0397899, 0.0397899, 0.0397899

...

We’re taking about 2.85 seconds for each process (not each generation),
and a current goodness of 0.0397899. Following are the current best coeffi-
cient values and the range table. We see here that coefficient w3 is nearing
its -500000 limit. We probably need to adjust the limit downward and restart
(this can be done automatically by setting the rangeexpand parameter to
1.

The generation number (1253) is the number of times population tests
has been run. The “done already” is the total number of coefficient sets tested,
and the “rejected” value is the number of sets rejected because they’ve already
been run.

32

5.4 Compilation

Because the system uses the Linux process functionality to distribute com-
putation, it will not run under Windows. You need to modify CFLAGS to
indicate with equation you want to compile for.

If you’re having trouble with process cleanup, you may wish to change
from -Ofast to -O1. This sometimes seems to make a difference though the
code runs much slower.

5.5 Adding a New Equation

New equations are added to equations.h. The template is:

#elif defined(yourname)
#define EQUATION "yourname"
#define VARS \

X(coef0) \
X(coef1) \
...
X(coefn)

#define LAST s_coefn

#define VARSI \
X(coefn) \
...
X(coef0)\

#define DEN equation for denominator
#define NUM equation for numerator

The modify Makefile and define yourname and do:

make clean

make

Build a configuration file with the ranges for your coefficients and sit back
and watch the corn grow.

33

5.6 Source Code

Files in indequm.tar.

file Contents

00README Archive contents description.
breed.c Takes a set of one or more coefficients and modifies the

values. There are several different ways to do this.
coils.c Showing results, writing them to files.

equations.h Equations to compile - add yours here.
o evaluate.c Do the minor scan on a set of coefficients for the defined

equation.
geneticproc.c The main loop for parcelling out coefficient sets to inac-

tive processes and capturing their results.
genrand.c Generate a completely random solution.
indequ.c Main program.
indequ.h Prototypes and data structures.

kbhit.c Checks for an input character to interrupt the program.
library.c Keep track of tested solutions so they aren’t repeated.
Makefile Build for Linux. Fix CFLAGS for equation.
process.c Subtask control and program exit.
readind.c Read the measured inductor CSV file.

sort.c Sort results by measured inductor - worst first.
storage.c Manage dynamic storage - reuse data structures.
symtab.c External name interface.

time.c Used for timing sub processes.
twister.c 64 bit random number generator.

vars*.indequ Various control files for the different equations.

Table 5.3: indequ source code

Index

all22.csv, 19, 21, 24, 29
allind.tar, 21, 24
alljan24.csv, 19, 21, 24
ARRLall22, 19
ARRLalljan24, 19
ARRLnls, 19
ARRLOriginal, 19

example, 19
ARRLTurns, 19

CFLAGS, 32
coefficients

range, 28
coil

program, 11
coilsperturn

coil parameter, 12
Comma Separated Variable, 23
compare, 23
CSV, 23
cvarname, 26

direction, 26

end
coil parameter, 12

Equation8, 19
EquationA, 19

example, 20
EquationD, 19
EquationF, 19

EquationI, 19

formfaces
coil parameter, 12

gauge
coil parameter, 12
inductor parameter, 17

genetic algorithm, 25
goodness, 26

indequm, 25
inductor

program, 17

javarname, 26

layer
coil parameter, 12

length
coil parameter, 12

Lundin, 19

maxgenerations, 26
maxlength

inductor parameter, 17
maxradius

inductor parameter, 17
maxturns

inductor parameter, 17
Miller, 19
minlength

34

35

inductor parameter, 17
minormax, 26
minradius

inductor parameter, 17
minturns

inductor parameter, 17

nls.csv, 19, 21, 24
noise, 26

pctchange, 26
population, 26
processes, 26

quitat, 26

radius
coil parameter, 12

raiselower, 26
randomminor, 26
rangeexpand, 26
reslength

inductor parameter, 17
resradius

inductor parameter, 17
resultc, 26
resultfile, 26
resultja, 26
RF1, 19
RFC, 19

save, 26
seed, 26
simple, 19

tries, 26
turns

coil parameter, 12
turntest.csv, 19, 21, 24

wallthickness
coil parameter, 12

wiresisze
coilparameter, 12

36

Bibliography

[1] David E. Goldbert. Genetic Algorithms in Search, Optimization & Ma-
chine Learning. Addison-Wesley, 1989.

[2] Jed Marti. Experiments with 3D printed coil forms.
//http://www.cog9llc.com.

37

	1 Introduction
	2 coil: Generate CSG coil form
	2.1 Source Code

	3 inductor: Best Approximation
	3.1 Command Line Parameters
	3.2 A Sample Run
	3.3 The Source Code

	4 compare: Analysis
	4.1 Source Code

	5 indequm: Genetic Optimization
	5.1 Genetic Algorithm
	5.2 The Control File
	5.2.1 Fixed Variables
	5.2.2 Coefficients
	5.2.3 Best Estimate

	5.3 Execution
	5.4 Compilation
	5.5 Adding a New Equation
	5.6 Source Code

